プレプリント / バージョン1

半離散方程式の対称性と群不変解

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.963

キーワード:

半離散方程式、 対称性、 リー群、 相似逓減、 群不変解

抄録

半離散方程式(微分差分方程式ともいう)においては,連続独立変数と離散独立変数が非可換のため,対称性とならない非内在(non-intrinsic)(または不規則(irregular))な変換が生じるという問題があった.本論文では,この問題の解決方法を論じるとともに,半離散方程式における対称性理論について紹介する.具体例として,戸田型,ヴォルテラ型,5 点の伊藤・成田・ボゴヤヴレンスキー方程式などのリー点対称性(Lie point symmetry)を求め,群不変解(group-invariant solution)を導出する.

利益相反に関する開示

著者は,この原稿と競合する利害関係がないことを宣言する.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

M. Ackerman and R. Hermann, Sophus Lie’s 1880 Transformation Group Paper, Brookline, Massachusetts: Mathematical Science Press, 1975.

M. Ackerman and R. Hermann, Sophus Lie’s 1884 Differential Invariant Paper, Brookline, Massachusetts: Mathematical Science Press, 1976.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E 51 (1995), 1035–1042. https://doi.org/10.1103/PhysRevE.51.1035

G. Bluman, A. Cheviakov and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, New York: Springer, 2010.

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs, Int. Math. Res. Not. 11 (2002), 573–611. https://doi.org/10.1155/S1073792802110075

O. I. Bogoyavlensky, Integrable discretizations of the KdV equation, Phys. Lett. A 134 (1988), 34–38. https://doi.org/10.1016/0375-9601(88)90542-7

V. Dorodnitsyn, Applications of Lie Groups to Difference Equations, Boca Raton, FL: Chapman & Hall, 2010.

R. N. Garifullin, R. I. Yamilov and D. Levi, Classification of five-point differential-difference equations, J. Phys. A: Math. Theor. 50 (2017), 125201 (27pp). https://doi.org/10.1088/1751-8121/aa5cc3

R. N. Garifullin, R. I. Yamilov and D. Levi, Classification of five-point differential-difference equations II, J. Phys. A: Math. Theor. 51 (2018), 065204 (16pp). https://doi.org/10.1088/1751-8121/aaa14e

P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge: Cambridge University Press, 2014.

Y. Itoh, An H-theorem for a system of competing species, Proc. Japan Acad. 51 (1975), 374–379. https://doi.org/10.3792/pja/1195518557

I. Kogan and P. J. Olver, Invariant Euler–Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137–193. https://doi.org/10.1023/A:1022993616247

D. Levi and P. Winternitz, Continuous symmetries of difference equations, J. Phys. A: Math. Gen. 39 (2006), R1–R63. https://doi.org/10.1088/0305-4470/39/2/R01

D. Levi and P. Winternitz, Continuous symmetries of discrete equations, Phys. Lett. A 152 (1991), 335–338. https://doi.org/10.1016/0375-9601(91)90733-O

D. Levi, P. Winternitz and R. I. Yamilov, Lie point symmetries of differential-difference equations, J. Phys. A: Math. Theor. 43 (2010), 292002 (14pp). https://doi.org/10.1088/1751-8113/43/29/292002

S. Maeda, Extension of discrete Noether theorem, Math. Japon. 26 (1981), 85–90.

E. L. Mansfield, A. Rojo-Echeburúa, P. E. Hydon and L. Peng, Moving frames and Noether’s finite difference conservation laws I, Transactions of Mathematics and Its Applications 3 (2019), tnz004 (47pp). https://doi.org/10.1093/imatrm/tnz004

A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations, In What is integrability?, V. E. Zakharov (ed.), Springer-Verlag, 1991, pp. 115–184. https://doi.org/10.1007/978-3-642-88703-1_4

T. Miwa, M. Jimbo and E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge: Cambridge University Press, 1999.

K. Narita, Soliton solution to extended Volterra equation, J. Phys. Soc. Japan 51 (1982), 1682–1685. https://doi.org/10.1143/JPSJ.51.1682

E. Noether, Invariante Variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen, Mathphys. Klasse 2 (1918), 235–257. English translation: Transport Theory Statist. Phys. 1 (1971), 186–207.

P. J. Olver, Applications of Lie Groups to Differential Equations, (2nd edn), New York: Springer-Verlag, 1993.

P. J. Olver, Emmy Noether’s enduring legacy in symmetry, Symmetry: Culture and Science 29 (2018), 475–485. https://doi.org/10.26830/symmetry_2018_4_475

L. Peng, Relations between symmetries and conservation laws for difference systems, J. Differ. Equ. Appl. 20 (2014), 1609–1626. https://doi.org/10.1080/10236198.2014.962526

L. Peng, Symmetries, conservation laws, and Noether’s theorem for differential-difference equations, Stud. Appl. Math. 139 (2017), 457–502. https://doi.org/10.1111/sapm.12168

L. Peng, Regular symmetries of differential-difference equations and Noether’s conservation laws, RIMS Kôkyûroku 2137 (2019), 130–139. http://hdl.handle.net/2433/254869

L. Peng and P. E. Hydon, Transformations, symmetries and Noether theorems for differential-difference equations, Proc. Roc. Soc. A 478 (2022), 20210944 (17pp). https://doi.org/10.1098/rspa.2021.0944

G. R. W. Quispel, H. W. Capel and R. Sahadevan, Continuous symmetries of differential-difference equations: The Kac–van Moerbeke equation and Painlevé reduction, Phys. Lett. A 170 (1992), 379–383. https://doi.org/10.1016/0375-9601(92)90891-O

O. G. Rasin and P. E. Hydon, Symmetries of integrable difference equations on the quad-graph, Stud. Appl. Math. 119 (2007), 253–269. https://doi.org/10.1111/j.1467-9590.2007.00385.x

S. N. M. Ruijsenaars, Relativistic Toda systems, Commun. Math. Phys. 133 (1990), 217–247. https://doi.org/10.1007/BF02097366

M. Toda, Vibration of a chain with a nonlinear interaction, J. Phys. Soc. Jpn. 22 (1967), 431–436. https://doi.org/10.1143/JPSJ.22.431

P. Xenitidis, Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type, J. Phys. A: Math. Gen. 44 (2011), 435201 (22pp). https://doi.org/10.1088/1751-8113/44/43/435201

R. Yamilov, Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen. 39 (2006), R541–R623. https://doi.org/10.1088/0305-4470/39/45/R01

ダウンロード

公開済


投稿日時: 2024-11-14 13:00:47 UTC

公開日時: 2024-11-15 06:50:41 UTC
研究分野
数学