プレプリント / バージョン1

脳オルガノイドを用いた自閉スペクトラム症の病態メカニズム解明:環境要因の影響評価と課題

##article.authors##

  • 中村, 賢佑 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室
  • 左中, 彩恵 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室
  • 樋口, 浩輝 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室
  • 久保, 明澄 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室
  • 神谷, 沙羅 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室
  • 佐々木, 哲也 筑波大学 医学医療系 生命医科学域 解剖学・神経科学研究室 https://orcid.org/0000-0002-7723-4417 https://researchmap.jp/tsasak

DOI:

https://doi.org/10.51094/jxiv.894

キーワード:

自閉スペクトラム症、 脳オルガノイド、 環境要因、 in vitroモデル、 神経発達

抄録

自閉スペクトラム症(ASD)は複雑な神経発達障害であり、その病態メカニズム解明が急務となっている。近年、ヒト幹細胞から作製される脳オルガノイド技術が、ASD研究に革新をもたらしている。この三次元培養モデルは、ASDの環境要因研究に特に有用である。薬剤曝露や感染などの環境因子がヒトの神経発達に与える影響を直接観察でき、長期的な影響評価も可能である。また、患者由来のiPS細胞を用いることで、個々の遺伝的背景を考慮した研究が実現する。これらの利点により、ASDの複雑な病因解明に新たな洞察をもたらしている。一方で、成熟度の限界や再現性の課題も存在する。倫理的配慮を重視しつつ、技術改良や他分野との融合により、これらの欠点克服が進められている。今後、この技術はASDの病態解明と新規治療法開発の加速に大きく貢献すると期待される。

利益相反に関する開示

著者らは競合する利害関係がないことを宣言する。

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Gangopadhyay M. DSM-5-TR® self-exam questions. Muskin PR, Dickerman AL, Drysdale A, Holderness CC, editors. Arlington, TX: American Psychiatric Association Publishing; 2023. 488 p.

Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry. 2019 Oct 1;76(10):1035–43.

Marton RM, Pașca SP. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 2020 Feb;30(2):133–43.

Amin ND, Paşca SP. Building models of brain disorders with three-dimensional organoids. Neuron. 2018 Oct 24;100(2):389–405.

Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014 Jul 18;345(6194):1247125.

Qian X, Song H, Ming G-L. Brain organoids: advances, applications and challenges. Development. 2019 Apr 16;146(8):dev166074.

Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016 Nov;22(11):1220–8.

Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019 Oct 3;25(4):558-569.e7.

Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA, et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell. 2019 Feb 7;176(4):743-756.e17.

Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019 Jun;570(7762):523–7.

Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015 Jul 16;162(2):375–90.

Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, et al. Atypical neurogenesis in induced pluripotent stem cells from autistic individuals. Biol Psychiatry. 2021 Mar 1;89(5):486–96.

Janssens S, Schotsaert M, Karnik R, Balasubramaniam V, Dejosez M, Meissner A, et al. Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. mSystems [Internet]. 2018 Jan;3(1). Available from: http://dx.doi.org/10.1128/mSystems.00219-17

Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T, Liu F, et al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science. 2018 Dec 14;362(6420):eaat6720.

Sasaki T. The role of immune system molecules in cortical formation and their abnormalities in psychiatric disorders. DOHaD Research. 2023;11(2):126–34.

Kubo A, Kamiya S, Higuchi K, Nakamura K, Kishi K, Sasaki T. Influence of maternal immune activity on fetal survival and brain development: critical role of IL-17A and microglia. jxiv.jst.go.jp [Internet]. Available from: https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/861

Sasaki T. Prenatal Programming and Autism Spectrum Disorders. DOHaD Research. 2023;11(1):15–6.

Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013 Apr 24;309(16):1696–703.

Al-Haddad BJS, Jacobsson B, Chabra S, Modzelewska D, Olson EM, Bernier R, et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry. 2019 Jun 1;76(6):594–602.

Kubo A, Sasaki T. IL-17 signaling and neuroimmunology: Psoriasis to Autism Spectrum Disorder [Internet]. Jxiv; 2024. Available from: http://dx.doi.org/10.51094/jxiv.869

Egorova O, Myte R, Schneede J, Hägglöf B, Bölte S, Domellöf E, et al. Maternal blood folate status during early pregnancy and occurrence of autism spectrum disorder in offspring: a study of 62 serum biomarkers. Mol Autism. 2020 Jan 16;11(1):7.

Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017 Mar 17;8(1):13.

Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand. 2017 Jan;135(1):29–41.

Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, et al. Does prenatal stress alter the developing connectome? Pediatr Res. 2017 Jan;81(1–2):214–26.

Schafer ST, Paquola ACM, Stern S, Gosselin D, Ku M, Pena M, et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci. 2019 Feb;22(2):243–55.

Sen D, Voulgaropoulos A, Drobna Z, Keung AJ. Human cerebral organoids reveal early spatiotemporal dynamics and pharmacological responses of UBE3A. Stem Cell Reports. 2020 Oct 13;15(4):845–54.

Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. Cell Regen (Lond). 2022 Jan 4;11(1):1.

Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011 Mar;14(3):285–93.

Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 2017 Oct;21(2):517–32.

Tian Y, Voineagu I, Paşca SP, Won H, Chandran V, Horvath S, et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 2014 Oct 10;6(10):75.

Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids - progress and perspective. J Mol Biol. 2022 Feb 15;434(3):167386.

Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol. 2022 Nov;18(11):661–80.

Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022 Feb;602(7896):268–73.

Zaslavsky K, Zhang W-B, McCready FP, Rodrigues DC, Deneault E, Loo C, et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci. 2019 Apr;22(4):556–64.

Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016 Jan 1;351(6268):84–8.

Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020 Feb 6;180(3):568-584.e23.

Sun W, Poschmann J, Cruz-Herrera del Rosario R, Parikshak NN, Hajan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell. 2016 Nov;167(5):1385-1397.e11.

Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature. 2018 Mar 22;555(7697):524–8.

Pelch KE, Bolden AL, Kwiatkowski CF. Environmental chemicals and autism: A scoping review of the human and animal research. Environ Health Perspect. 2019 Apr;127(4):46001.

Brito A, Russo FB, Muotri AR, Beltrão-Braga PCB. Autism spectrum disorders and disease modeling using stem cells. Cell Tissue Res. 2018 Jan;371(1):153–60.

Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA. 2019 Sep 10;5(8):FSO413.

Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. Lab Chip. 2024 Feb 13;24(4):680–96.

Sawai T, Hayashi Y, Niikawa T, Shepherd J, Thomas E, Lee T-L, et al. Mapping the ethical issues of brain organoid research and application. AJOB Neurosci. 2022 Apr;13(2):81–94.

Niikawa T, Hayashi Y, Shepherd J, Sawai T. Human brain organoids and consciousness. Neuroethics [Internet]. 2022 Apr;15(1). Available from: http://dx.doi.org/10.1007/s12152-022-09483-1

ダウンロード

公開済


投稿日時: 2024-09-08 08:22:36 UTC

公開日時: 2024-09-10 08:29:17 UTC
研究分野
生物学・生命科学・基礎医学