重力レンズ解析による宇宙暗黒物質地図と深層学習の応用
DOI:
https://doi.org/10.51094/jxiv.65キーワード:
宇宙暗黒物質、 重力レンズ、 深層学習、 生成モデル、 敵対的生成ネットワーク抄録
大規模な天文観測データの解析により, 我々の宇宙には光で直接検出できない (あるいは非常 に検出が難しい) 物質が存在することが示唆されている. そのような物質は宇宙暗黒物質と呼 ばれ, 過去から現在まで宇宙の至る所に遍く存在する一方で, その存在は既存の物理学の範疇 では説明できない. 暗黒物質の正体を解明するために, 暗黒物質が宇宙のどこにどれくらい集 まっているか–暗黒物質地図–を観測的に明らかにすることは重要である. 光で観測することが 難しい暗黒物質の地図を描くための有力な手法として, 重力レンズ解析が近年注目を集めてい る. 重力レンズ効果とは, 遠方にある銀河などの天体の像が, 観測者と天体の間に存在する物質 の重力によって歪むという一般相対性理論によって予言される現象である. 現在, 世界各地で 進む銀河撮像観測では, 重力レンズ効果により生じる銀河のわずかな歪みから視線方向にある 暗黒物質の存在量を推定する重力レンズ解析が精力的に行われている. 本稿では, 現代宇宙論 の概要, 重力レンズ解析の基礎的な事項をまとめ, 近年特に盛り上がりを見せている重力レンズ 解析における深層学習の応用について, 筆者らの最近の研究内容を交えながら解説する.
ダウンロード *前日までの集計結果を表示します
引用文献
Aghanim, N. et al. (2020). Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, p. A6, DOI: http://dx.doi.org/10.1051/0004- 6361/201833910, [Erratum: Astron.Astrophys. 652, C4 (2021)].
Alpher, R. A. and Herman, R. C. (1948). On the Relative Abundance of the Elements, Phys. Rev., 74 (12), 1737–1742, DOI: http://dx.doi.org/10.1103/physrev.74.1737.
Alpher, R. A. and Herman, R. C. (1949). Remarks on the Evolution of the Expanding Universe, Phys. Rev., 75 (7), 1089–1095, DOI: http://dx.doi.org/10.1103/physrev.75.1089.
Bartelmann, M. and Schneider, P. (2001). Weak gravitational lensing, Phys. Rept., 340, 291–472, DOI: http://dx.doi.org/10.1016/S0370- 1573(00)00082- X.
Bernstein, G. M. and Jarvis, M. (2002). Shapes and shears, stars and smears: optimal measurements for weak lensing, Astron. J., 123, 583–618, DOI: http://dx.doi.org/10.1086/338085.
Böhm, V., Feng, Y., Lee, M. E. and Dai, B. (2021). MADLens, a python package for fast and differentiable non-Gaussian lensing simulations, Astron. Comput., 36, p. 100490, DOI: http: //dx.doi.org/10.1016/j.ascom.2021.100490.
Choi, S. K. et al. (2020). The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz, JCAP, 12, p. 045, DOI: http://dx.doi.org/10. 1088/1475- 7516/2020/12/045.
Dai, B. and Seljak, U. (2022). Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological Analysis, URL: https://arxiv.org/abs/2202.05282, DOI: http: //dx.doi.org/10.48550/ARXIV.2202.05282.
Eddington, A. S. (1920). Space, time and gravitation, Cambridge University Press, Cambridge.
Fiedorowicz, P., Rozo, E., Boruah, S. S., Chang, C. and Gatti, M. (2022). KaRMMa – kappa re-construction for mass mapping, Mon. Not. Roy. Astron. Soc., 512 (1), 73–85, DOI: http://dx.doi.org/10.1093/mnras/stac468.
Freedman, W. L. and Madore, B. F. (2010). The Hubble Constant, Ann. Rev. Astron. Astrophys., 48, 673–710, DOI: http://dx.doi.org/10.1146/annurev-astro-082708-101829.
Gamow, G. (1946). Expanding universe and the origin of elements, Phys. Rev., 70, 572–573, DOI:http://dx.doi.org/10.1103/PhysRev.70.572.2.
Giocoli, C., Monaco, P., Moscardini, L., Castro, T., Meneghetti, M., Metcalf, R. B. and Baldi, M. (2020). Testing the Reliability of Fast Methods for Weak Lensing Simulations: WL-MOKA on PINOCCHIO, Mon. Not. Roy. Astron. Soc., 496 (2), 1307–1324, DOI: http://dx.doi.org/10. 1093/mnras/staa1538.
Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press, http://www. deeplearningbook.org.
Hamana, T. and Mellier, Y. (2001). Numerical study of statistical properties of the lensing excur- sion angles, Mon. Not. Roy. Astron. Soc., 327, p. 169, DOI: http://dx.doi.org/10.1046/j. 1365- 8711.2001.04685.x.
Hamana, T., Takada, M. and Yoshida, N. (2004). Searching for massive clusters in weak lensing sur- veys, Mon. Not. Roy. Astron. Soc., 350, p. 893, DOI: http://dx.doi.org/10.1111/j.1365-2966. 2004.07691.x.
He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W. and Póczos, B. (2019). Learning to Pre- dict the Cosmological Structure Formation, Proc. Nat. Acad. Sci., 116 (28), 13825–13832, DOI: http://dx.doi.org/10.1073/pnas.1821458116.
Hikage, C. et al. (2019). Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data, Publ. Astron. Soc. Jap., 71 (2), p. 43, DOI: http://dx.doi.org/10.1093/pasj/ psz010.
Hinshaw, G. et al. (2013). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl., 208, p. 19, DOI: http://dx.doi.org/10. 1088/0067- 0049/208/2/19.
Hirata, C. M., Mandelbaum, R., Ishak, M., Seljak, U., Nichol, R., Pimbblet, K. A., Ross, N. P. and Wake, D. (2007). Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: Luminosity and redshift scalings and implications for weak lensing surveys, Mon. Not. Roy. Astron. Soc., 381, 1197–1218, DOI: http://dx.doi.org/10.1111/j.1365-2966.2007.12312.x.
Hu, W., Sugiyama, N. and Silk, J. (1997). The Physics of microwave background anisotropies, Nature, 386, 37–43, DOI: http://dx.doi.org/10.1038/386037a0.
Ishiyama, T. et al. (2021). The Uchuu simulations: Data Release 1 and dark matter halo concen- trations, Mon. Not. Roy. Astron. Soc., 506 (3), 4210–4231, DOI: http://dx.doi.org/10.1093/ mnras/stab1755.
Isola, P., Zhu, J., Zhou, T. and Efros, A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks, CoRR, abs/1611.07004, URL: http://arxiv.org/abs/1611.07004.
Jain, B., Seljak, U. and White, S. D. M. (2000). Ray tracing simulations of weak lensing by large scale structure, Astrophys. J., 530, p. 547, DOI: http://dx.doi.org/10.1086/308384.
Jeffrey, N. et al. (2018). Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV, Mon. Not. Roy. Astron. Soc., 479 (3), 2871–2888, DOI:http://dx.doi.org/10.1093/mnras/sty1252.
Jeffrey, N., Lanusse, F., Lahav, O. and Starck, J.-L. (2020). Deep learning dark matter map reconstructions from DES SV weak lensing data, Mon. Not. Roy. Astron. Soc., 492 (4), 5023–5029, DOI: http://dx.doi.org/10.1093/mnras/staa127.
Kaiser, N. and Squires, G. (1993). Mapping the dark matter with weak gravitational lensing, Astrophys. J., 404, 441–450, DOI: http://dx.doi.org/10.1086/172297.
Kodama, H. and Sasaki, M. (1984). Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl., 78, 1–166, DOI: http://dx.doi.org/10.1143/PTPS.78.1.
Li, Y., Ni, Y., Croft, R. A. C., Di Matteo, T., Bird, S. and Feng, Y. (2020). AI-assisted super-resolution cosmological simulations, 10, DOI: http://dx.doi.org/10.1073/pnas.2022038118.
Mandelbaum, R. et al. (2017). The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey, 5, DOI: http://dx.doi.org/10.1093/pasj/psx130.
Miralda-Escude, J. (1991). The Correlation Function of Galaxy Ellipticities Produced by Gravitational Lensing, Astrophys. J., 380, p. 1, DOI: http://dx.doi.org/10.1086/170555.
Miyazaki, S., Hamana, T., Ellis, R. S., Kashikawa, N., Massey, R. J., Taylor, J. and Refregier, A. (2007). A Subaru Weak Lensing Survey I: Cluster Candidates and Spectroscopic Verification, Astrophys. J., 669, p. 714, DOI: http://dx.doi.org/10.1086/521621.
Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R. and Kratochvil, J. M. (2019). Cosmo-GAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Net- works, Computational Astrophysics and Cosmology, 6 (1), p. 1, May, DOI: http://dx.doi.org/ 10.1186/s40668- 019- 0029- 9.
Penzias, A. A. and Wilson, R. W. (1965). A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., 142, 419–421, DOI: http://dx.doi.org/10.1086/148307.
Perraudin, N., Marcon, S., Lucchi, A. and Kacprzak, T. (2021). Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks, Front. Artif. Intell., 4, p. 673062, DOI: http://dx.doi.org/10.3389/frai.2021.673062.
Remy, B., Lanusse, F., Jeffrey, N., Liu, J., Starck, J.-L., Osato, K. and Schrabback, T. (2022). Proba- bilistic Mass Mapping with Neural Score Estimation, URL: https://arxiv.org/abs/2201.05561, DOI: http://dx.doi.org/10.48550/ARXIV.2201.05561.
Salucci, P. (2019). The distribution of dark matter in galaxies, Astron. Astrophys. Rev., 27 (1), p. 2, DOI: http://dx.doi.org/10.1007/s00159-018-0113-1.
Sato, M., Hamana, T., Takahashi, R., Takada, M., Yoshida, N., Matsubara, T. and Sugiyama, N. (2009). Simulations of Wide-Field Weak Lensing Surveys I: Basic Statistics and Non-Gaussian Effects, Astrophys. J., 701, 945–954, DOI: http://dx.doi.org/10.1088/0004-637X/701/2/945.
Schneider, P. (1996). Detection of (dark) matter concentrations via weak gravitational lensing, Mon. Not. Roy. Astron. Soc., 283, 837–853, DOI: http://dx.doi.org/10.1093/mnras/283.3.837.
Seljak, U. (1998). Weak lensing reconstruction and power spectrum estimation: minimum variance methods, Astrophys. J., 506, p. 64, DOI: http://dx.doi.org/10.1086/306225.
Shirasaki, M., Yoshida, N. and Ikeda, S. (2019a). Denoising Weak Lensing Mass Maps with Deep Learning, Phys. Rev. D, 100 (4), p. 043527, DOI: http://dx.doi.org/10.1103/PhysRevD.100.043527.
Shirasaki, M., Hamana, T., Takada, M., Takahashi, R. and Miyatake, H. (2019b). Mock galaxy shape catalogues in the Subaru Hyper Suprime-Cam Survey, Mon. Not. Roy. Astron. Soc., 486 (1), 52–69, DOI: http://dx.doi.org/10.1093/mnras/stz791.
Shirasaki, M., Moriwaki, K., Oogi, T., Yoshida, N., Ikeda, S. and Nishimichi, T. (2021). Noise reduction for weak lensing mass mapping: an application of generative adversarial networks to Subaru Hyper Suprime-Cam first-year data, Mon. Not. Roy. Astron. Soc., 504 (2), 1825–1839, DOI: http://dx.doi.org/10.1093/mnras/stab982.
Singh, S., Mandelbaum, R. and More, S. (2015). Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies, Mon. Not. Roy. Astron. Soc., 450 (2), 2195–2216, DOI: http://dx.doi.org/10.1093/ mnras/stv778.
Smith, R. E., Peacock, J. A., Jenkins, A., White, S. D. M., Frenk, C. S., Pearce, F. R., Thomas, P. A., Efstathiou, G. and Couchmann, H. M. P. (2003). Stable clustering, the halo model and nonlinear cosmological power spectra, Mon. Not. Roy. Astron. Soc., 341, p. 1311, DOI: http://dx.doi.org/10.1046/j.1365- 8711.2003.06503.x.
Song, Y. and Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution, URL: https://arxiv.org/abs/1907.05600, DOI: http://dx.doi.org/10.48550/ARXIV. 1907.05600.
Takahashi, R., Oguri, M., Sato, M. and Hamana, T. (2011). Probability Distribution Functions of Cosmological Lensing: Convergence, Shear, and Magnification, Astrophys. J., 742, p. 15, DOI: http://dx.doi.org/10.1088/0004- 637X/742/1/15.
Takahashi, R., Sato, M., Nishimichi, T., Taruya, A. and Oguri, M. (2012). Revising the Halofit Model for the Nonlinear Matter Power Spectrum, Astrophys. J., 761, p. 152, DOI: http: //dx.doi.org/10.1088/0004- 637X/761/2/152.
Taruya, A., Takada, M., Hamana, T., Kayo, I. and Futamase, T. (2002). Lognormal property of weak- lensing fields, Astrophys. J., 571, 638–653, DOI: http://dx.doi.org/10.1086/340048.
Tassev, S., Zaldarriaga, M. and Eisenstein, D. (2013). Solving Large Scale Structure in Ten Easy Steps with COLA, JCAP, 06, p. 036, DOI: http://dx.doi.org/10.1088/1475-7516/2013/06/036.
Troxel, M. A. and Ishak, M. (2014). The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology, Phys. Rept., 558, 1–59, DOI: http: //dx.doi.org/10.1016/j.physrep.2014.11.001.
Weinberg, S. (2003). Four golden lessons, Nature, 426, p. 389, DOI: http://dx.doi.org/10.1038/ 426389a.
White, M. J. and Hu, W. (2000). A New algorithm for computing statistics of weak lensing by large scale structure, Astrophys. J., 537, 1–11, DOI: http://dx.doi.org/10.1086/309009.
Yamamoto, K., Sugiyama, N. and Sato, H. (1998). Evolution of small scale cosmological baryon per- turbations and matter transfer functions, Astrophys. J., 501, p. 442, DOI: http://dx.doi.org/ 10.1086/305841.
Yoshida, N., Sugiyama, N. and Hernquist, L. (2003). The evolution of baryon density fluctuations in multi-component cosmological simulations, Mon. Not. Roy. Astron. Soc., 344, 481–491, DOI: http://dx.doi.org/10.1046/j.1365- 8711.2003.06829.x.
小松英一郎 (2019). 『宇宙マイクロ波背景放射』, 日本評論社, 東京.
ダウンロード
公開済
投稿日時: 2022-05-10 03:59:52 UTC
公開日時: 2022-05-11 09:58:26 UTC
ライセンス
Copyright(c)2022
白崎, 正人
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。