Preprint / Version 1

Mapping of cosmic dark matter with gravitational lensing analyses and applications of deep learning networks

##article.authors##

  • Masato Shirasaki National Astronomical Observatory of Japan, Research Enhancement Strategy Office

DOI:

https://doi.org/10.51094/jxiv.65

Keywords:

Cosmic dark matter, Gravitational lensing, Deep learning, Generative models, Generative adversarial networks

Abstract

An array of large-scale astronomical observations has firmly confirmed the existence of invisible mass components in our Universe. Such invisible materials are referred to as cosmic dark matter. The observational studies have pointed out that dark matter can exist anywhere from the past to the present, but its existence can not be explained by the Standard Model of particle physics. Mapping of spatial distribution in dark matter density plays an essential role to identify the nature of cosmic dark matter. Gravitational lensing analyses are among the most powerful approaches to provide a large-scale map of cosmic dark matter from observations. The General Relativity predicts that intervening cosmic matter distribution causes a coherent distortion of images of background galaxies at large separations. This interesting phenomena is known as the gravitational lensing effect. Modern galaxy imaging surveys aim at inferring the dark matter density at dif- ferent line-of-sight directions by a precise measurement of gravitational lensing effects of billions of galaxies in a wide sky coverage. In this article, we begin with a brief summary of modern cosmology, and summarize basics of gravitational lensing analyses. We then de- scribe a recent progress in applications of deep learning to the gravitational-lensing-based mapping of dark matter, including our latest analysis.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Aghanim, N. et al. (2020). Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, p. A6, DOI: http://dx.doi.org/10.1051/0004- 6361/201833910, [Erratum: Astron.Astrophys. 652, C4 (2021)].

Alpher, R. A. and Herman, R. C. (1948). On the Relative Abundance of the Elements, Phys. Rev., 74 (12), 1737–1742, DOI: http://dx.doi.org/10.1103/physrev.74.1737.

Alpher, R. A. and Herman, R. C. (1949). Remarks on the Evolution of the Expanding Universe, Phys. Rev., 75 (7), 1089–1095, DOI: http://dx.doi.org/10.1103/physrev.75.1089.

Bartelmann, M. and Schneider, P. (2001). Weak gravitational lensing, Phys. Rept., 340, 291–472, DOI: http://dx.doi.org/10.1016/S0370- 1573(00)00082- X.

Bernstein, G. M. and Jarvis, M. (2002). Shapes and shears, stars and smears: optimal measurements for weak lensing, Astron. J., 123, 583–618, DOI: http://dx.doi.org/10.1086/338085.

Böhm, V., Feng, Y., Lee, M. E. and Dai, B. (2021). MADLens, a python package for fast and differentiable non-Gaussian lensing simulations, Astron. Comput., 36, p. 100490, DOI: http: //dx.doi.org/10.1016/j.ascom.2021.100490.

Choi, S. K. et al. (2020). The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz, JCAP, 12, p. 045, DOI: http://dx.doi.org/10. 1088/1475- 7516/2020/12/045.

Dai, B. and Seljak, U. (2022). Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological Analysis, URL: https://arxiv.org/abs/2202.05282, DOI: http: //dx.doi.org/10.48550/ARXIV.2202.05282.

Eddington, A. S. (1920). Space, time and gravitation, Cambridge University Press, Cambridge.

Fiedorowicz, P., Rozo, E., Boruah, S. S., Chang, C. and Gatti, M. (2022). KaRMMa – kappa re-construction for mass mapping, Mon. Not. Roy. Astron. Soc., 512 (1), 73–85, DOI: http://dx.doi.org/10.1093/mnras/stac468.

Freedman, W. L. and Madore, B. F. (2010). The Hubble Constant, Ann. Rev. Astron. Astrophys., 48, 673–710, DOI: http://dx.doi.org/10.1146/annurev-astro-082708-101829.

Gamow, G. (1946). Expanding universe and the origin of elements, Phys. Rev., 70, 572–573, DOI:http://dx.doi.org/10.1103/PhysRev.70.572.2.

Giocoli, C., Monaco, P., Moscardini, L., Castro, T., Meneghetti, M., Metcalf, R. B. and Baldi, M. (2020). Testing the Reliability of Fast Methods for Weak Lensing Simulations: WL-MOKA on PINOCCHIO, Mon. Not. Roy. Astron. Soc., 496 (2), 1307–1324, DOI: http://dx.doi.org/10. 1093/mnras/staa1538.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press, http://www. deeplearningbook.org.

Hamana, T. and Mellier, Y. (2001). Numerical study of statistical properties of the lensing excur- sion angles, Mon. Not. Roy. Astron. Soc., 327, p. 169, DOI: http://dx.doi.org/10.1046/j. 1365- 8711.2001.04685.x.

Hamana, T., Takada, M. and Yoshida, N. (2004). Searching for massive clusters in weak lensing sur- veys, Mon. Not. Roy. Astron. Soc., 350, p. 893, DOI: http://dx.doi.org/10.1111/j.1365-2966. 2004.07691.x.

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W. and Póczos, B. (2019). Learning to Pre- dict the Cosmological Structure Formation, Proc. Nat. Acad. Sci., 116 (28), 13825–13832, DOI: http://dx.doi.org/10.1073/pnas.1821458116.

Hikage, C. et al. (2019). Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data, Publ. Astron. Soc. Jap., 71 (2), p. 43, DOI: http://dx.doi.org/10.1093/pasj/ psz010.

Hinshaw, G. et al. (2013). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl., 208, p. 19, DOI: http://dx.doi.org/10. 1088/0067- 0049/208/2/19.

Hirata, C. M., Mandelbaum, R., Ishak, M., Seljak, U., Nichol, R., Pimbblet, K. A., Ross, N. P. and Wake, D. (2007). Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: Luminosity and redshift scalings and implications for weak lensing surveys, Mon. Not. Roy. Astron. Soc., 381, 1197–1218, DOI: http://dx.doi.org/10.1111/j.1365-2966.2007.12312.x.

Hu, W., Sugiyama, N. and Silk, J. (1997). The Physics of microwave background anisotropies, Nature, 386, 37–43, DOI: http://dx.doi.org/10.1038/386037a0.

Ishiyama, T. et al. (2021). The Uchuu simulations: Data Release 1 and dark matter halo concen- trations, Mon. Not. Roy. Astron. Soc., 506 (3), 4210–4231, DOI: http://dx.doi.org/10.1093/ mnras/stab1755.

Isola, P., Zhu, J., Zhou, T. and Efros, A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks, CoRR, abs/1611.07004, URL: http://arxiv.org/abs/1611.07004.

Jain, B., Seljak, U. and White, S. D. M. (2000). Ray tracing simulations of weak lensing by large scale structure, Astrophys. J., 530, p. 547, DOI: http://dx.doi.org/10.1086/308384.

Jeffrey, N. et al. (2018). Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV, Mon. Not. Roy. Astron. Soc., 479 (3), 2871–2888, DOI:http://dx.doi.org/10.1093/mnras/sty1252.

Jeffrey, N., Lanusse, F., Lahav, O. and Starck, J.-L. (2020). Deep learning dark matter map reconstructions from DES SV weak lensing data, Mon. Not. Roy. Astron. Soc., 492 (4), 5023–5029, DOI: http://dx.doi.org/10.1093/mnras/staa127.

Kaiser, N. and Squires, G. (1993). Mapping the dark matter with weak gravitational lensing, Astrophys. J., 404, 441–450, DOI: http://dx.doi.org/10.1086/172297.

Kodama, H. and Sasaki, M. (1984). Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl., 78, 1–166, DOI: http://dx.doi.org/10.1143/PTPS.78.1.

Li, Y., Ni, Y., Croft, R. A. C., Di Matteo, T., Bird, S. and Feng, Y. (2020). AI-assisted super-resolution cosmological simulations, 10, DOI: http://dx.doi.org/10.1073/pnas.2022038118.

Mandelbaum, R. et al. (2017). The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey, 5, DOI: http://dx.doi.org/10.1093/pasj/psx130.

Miralda-Escude, J. (1991). The Correlation Function of Galaxy Ellipticities Produced by Gravitational Lensing, Astrophys. J., 380, p. 1, DOI: http://dx.doi.org/10.1086/170555.

Miyazaki, S., Hamana, T., Ellis, R. S., Kashikawa, N., Massey, R. J., Taylor, J. and Refregier, A. (2007). A Subaru Weak Lensing Survey I: Cluster Candidates and Spectroscopic Verification, Astrophys. J., 669, p. 714, DOI: http://dx.doi.org/10.1086/521621.

Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R. and Kratochvil, J. M. (2019). Cosmo-GAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Net- works, Computational Astrophysics and Cosmology, 6 (1), p. 1, May, DOI: http://dx.doi.org/ 10.1186/s40668- 019- 0029- 9.

Penzias, A. A. and Wilson, R. W. (1965). A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., 142, 419–421, DOI: http://dx.doi.org/10.1086/148307.

Perraudin, N., Marcon, S., Lucchi, A. and Kacprzak, T. (2021). Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks, Front. Artif. Intell., 4, p. 673062, DOI: http://dx.doi.org/10.3389/frai.2021.673062.

Remy, B., Lanusse, F., Jeffrey, N., Liu, J., Starck, J.-L., Osato, K. and Schrabback, T. (2022). Proba- bilistic Mass Mapping with Neural Score Estimation, URL: https://arxiv.org/abs/2201.05561, DOI: http://dx.doi.org/10.48550/ARXIV.2201.05561.

Salucci, P. (2019). The distribution of dark matter in galaxies, Astron. Astrophys. Rev., 27 (1), p. 2, DOI: http://dx.doi.org/10.1007/s00159-018-0113-1.

Sato, M., Hamana, T., Takahashi, R., Takada, M., Yoshida, N., Matsubara, T. and Sugiyama, N. (2009). Simulations of Wide-Field Weak Lensing Surveys I: Basic Statistics and Non-Gaussian Effects, Astrophys. J., 701, 945–954, DOI: http://dx.doi.org/10.1088/0004-637X/701/2/945.

Schneider, P. (1996). Detection of (dark) matter concentrations via weak gravitational lensing, Mon. Not. Roy. Astron. Soc., 283, 837–853, DOI: http://dx.doi.org/10.1093/mnras/283.3.837.

Seljak, U. (1998). Weak lensing reconstruction and power spectrum estimation: minimum variance methods, Astrophys. J., 506, p. 64, DOI: http://dx.doi.org/10.1086/306225.

Shirasaki, M., Yoshida, N. and Ikeda, S. (2019a). Denoising Weak Lensing Mass Maps with Deep Learning, Phys. Rev. D, 100 (4), p. 043527, DOI: http://dx.doi.org/10.1103/PhysRevD.100.043527.

Shirasaki, M., Hamana, T., Takada, M., Takahashi, R. and Miyatake, H. (2019b). Mock galaxy shape catalogues in the Subaru Hyper Suprime-Cam Survey, Mon. Not. Roy. Astron. Soc., 486 (1), 52–69, DOI: http://dx.doi.org/10.1093/mnras/stz791.

Shirasaki, M., Moriwaki, K., Oogi, T., Yoshida, N., Ikeda, S. and Nishimichi, T. (2021). Noise reduction for weak lensing mass mapping: an application of generative adversarial networks to Subaru Hyper Suprime-Cam first-year data, Mon. Not. Roy. Astron. Soc., 504 (2), 1825–1839, DOI: http://dx.doi.org/10.1093/mnras/stab982.

Singh, S., Mandelbaum, R. and More, S. (2015). Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies, Mon. Not. Roy. Astron. Soc., 450 (2), 2195–2216, DOI: http://dx.doi.org/10.1093/ mnras/stv778.

Smith, R. E., Peacock, J. A., Jenkins, A., White, S. D. M., Frenk, C. S., Pearce, F. R., Thomas, P. A., Efstathiou, G. and Couchmann, H. M. P. (2003). Stable clustering, the halo model and nonlinear cosmological power spectra, Mon. Not. Roy. Astron. Soc., 341, p. 1311, DOI: http://dx.doi.org/10.1046/j.1365- 8711.2003.06503.x.

Song, Y. and Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution, URL: https://arxiv.org/abs/1907.05600, DOI: http://dx.doi.org/10.48550/ARXIV. 1907.05600.

Takahashi, R., Oguri, M., Sato, M. and Hamana, T. (2011). Probability Distribution Functions of Cosmological Lensing: Convergence, Shear, and Magnification, Astrophys. J., 742, p. 15, DOI: http://dx.doi.org/10.1088/0004- 637X/742/1/15.

Takahashi, R., Sato, M., Nishimichi, T., Taruya, A. and Oguri, M. (2012). Revising the Halofit Model for the Nonlinear Matter Power Spectrum, Astrophys. J., 761, p. 152, DOI: http: //dx.doi.org/10.1088/0004- 637X/761/2/152.

Taruya, A., Takada, M., Hamana, T., Kayo, I. and Futamase, T. (2002). Lognormal property of weak- lensing fields, Astrophys. J., 571, 638–653, DOI: http://dx.doi.org/10.1086/340048.

Tassev, S., Zaldarriaga, M. and Eisenstein, D. (2013). Solving Large Scale Structure in Ten Easy Steps with COLA, JCAP, 06, p. 036, DOI: http://dx.doi.org/10.1088/1475-7516/2013/06/036.

Troxel, M. A. and Ishak, M. (2014). The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology, Phys. Rept., 558, 1–59, DOI: http: //dx.doi.org/10.1016/j.physrep.2014.11.001.

Weinberg, S. (2003). Four golden lessons, Nature, 426, p. 389, DOI: http://dx.doi.org/10.1038/ 426389a.

White, M. J. and Hu, W. (2000). A New algorithm for computing statistics of weak lensing by large scale structure, Astrophys. J., 537, 1–11, DOI: http://dx.doi.org/10.1086/309009.

Yamamoto, K., Sugiyama, N. and Sato, H. (1998). Evolution of small scale cosmological baryon per- turbations and matter transfer functions, Astrophys. J., 501, p. 442, DOI: http://dx.doi.org/ 10.1086/305841.

Yoshida, N., Sugiyama, N. and Hernquist, L. (2003). The evolution of baryon density fluctuations in multi-component cosmological simulations, Mon. Not. Roy. Astron. Soc., 344, 481–491, DOI: http://dx.doi.org/10.1046/j.1365- 8711.2003.06829.x.

小松英一郎 (2019). 『宇宙マイクロ波背景放射』, 日本評論社, 東京.

Posted


Submitted: 2022-05-10 03:59:52 UTC

Published: 2022-05-11 09:58:26 UTC
Section
Earth science & Astronomy