プレプリント / バージョン1

Specification of Variant Interpretation Guidelines for Inherited Retinal Dystrophy in Japan

##article.authors##

  • Fujinami, Kaoru Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center
  • Koji M. Nishiguchi Department of Ophthalmology, Nagoya University Graduate School of Medicine
  • Akio Oishi Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University
  • Masato Akiyama Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University
  • Yasuhiro Ikeda Department of Ophthalmology, Faculty of Medicine, University of Miyazaki

DOI:

https://doi.org/10.51094/jxiv.538

キーワード:

inherited retinal dystrophy、 ACMG/AMP guidelines、 genetic diagnosis、 variant interpretation、 Japanese

抄録

The accurate interpretation of sequence variants in inherited retinal dystrophy (IRD) is vital due to the significant genetic heterogeneity observed in this disorder. To achieve consistent and accurate diagnoses, it is essential to establish standardized guidelines for variant interpretation. The American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant interpretation serve as the global “cross-disease” standard for classifying variants in Mendelian hereditary disorders. These guidelines propose a systematic approach for categorizing variants into five classes based on various types of evidence, such as population data, computational data, functional data, and segregation data. However, for clinical genetic diagnosis and to ensure standardized diagnosis and treatment criteria, additional specifications based on features associated with each disorder are necessary. In this context, we present a comprehensive framework outlining the newly specified ACMG/AMP rules tailored explicitly for IRD in the Japanese population. These guidelines consider disease frequencies, allele frequencies, and both phenotypic and genotypic characteristics unique to IRD in the Japanese population. Adjustments and modifications have been incorporated to reflect the specific requirements of the population. By incorporating these IRD-specific factors and refining the existing ACMG/AMP guidelines, we aim to enhance the accuracy and consistency of variant interpretation in IRD cases, particularly in the Japanese population. These guidelines serve as a valuable resource for ophthalmologists and clinical geneticists involved in the diagnosis and treatment of IRD, providing them with a standardized framework to assess and classify genetic variants.

利益相反に関する開示

The authors have no conflicts of interest directly relevant to the content of this article.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

著者の経歴

Fujinami, Kaoru、Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center

Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center

Koji M. Nishiguchi、Department of Ophthalmology, Nagoya University Graduate School of Medicine

Department of Ophthalmology, Nagoya University Graduate School of Medicine

Akio Oishi、Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University

Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University

Masato Akiyama、Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University

Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University

Yasuhiro Ikeda、Department of Ophthalmology, Faculty of Medicine, University of Miyazaki

Department of Ophthalmology, Faculty of Medicine, University of Miyazaki

引用文献

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. May 2015;17(5):405-24. doi:10.1038/gim.2015.30

Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. Nov 2018;39(11):1517-1524. doi:10.1002/humu.23626

Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. Nov 2018;39(11):1593-1613. doi:10.1002/humu.23630

Iwanami M, Oishi A, Ogino K, et al. Five major sequence variants and copy number variants in the EYS gene account for one-third of Japanese patients with autosomal recessive and simplex retinitis pigmentosa. Mol Vis. 2019;25:766-779.

Nishiguchi KM, Miya F, Mori Y, et al. A hypomorphic variant in EYS detected by genome-wide association study contributes toward retinitis pigmentosa. Commun Biol. Jan 29 2021;4(1):140. doi:10.1038/s42003-021-01662-9

Numa S, Oishi A, Higasa K, et al. EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Sci Rep. Nov 27 2020;10(1):20770. doi:10.1038/s41598-020-77558-1

Yang L, Fujinami K, Ueno S, et al. Genetic Spectrum of EYS-associated Retinal Disease in a Large Japanese Cohort: Identification of Disease-associated Variants with Relatively High Allele Frequency. Sci Rep. Mar 26 2020;10(1):5497. doi:10.1038/s41598-020-62119-3

Walker LC, Hoya M, Wiggins GAR, et al. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet. Jul 6 2023;110(7):1046-1067. doi:10.1016/j.ajhg.2023.06.002

Pejaver V, Byrne AB, Feng BJ, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. Dec 1 2022;109(12):2163-2177. doi:10.1016/j.ajhg.2022.10.013

Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. Oct 6 2016;99(4):877-885. doi:10.1016/j.ajhg.2016.08.016

Xiang J, Peng J, Baxter S, Peng Z. AutoPVS1: An automatic classification tool for PVS1 interpretation of null variants. Hum Mutat. Sep 2020;41(9):1488-1498. doi:10.1002/humu.24051

Verbakel SK, van Huet RAC, den Hollander AI, et al. Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum. Invest Ophthalmol Vis Sci. Mar 1 2019;60(4):1192-1203. doi:10.1167/iovs.18-26084

Liu Q, Collin RW, Cremers FP, den Hollander AI, van den Born LI, Pierce EA. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype. PLoS One. 2012;7(8):e43251. doi:10.1371/journal.pone.0043251

Nishiguchi KM, Kunikata H, Fujita K, et al. Association of CRX genotypes and retinal phenotypes confounded by variable expressivity and electronegative electroretinogram. Clin Exp Ophthalmol. Jul 2020;48(5):644-657. doi:10.1111/ceo.13743

Fujinami-Yokokawa Y, Fujinami K, Kuniyoshi K, et al. Clinical and Genetic Characteristics of 18 Patients from 13 Japanese Families with CRX-associated retinal disorder: Identification of Genotype-phenotype Association. Sci Rep. Jun 12 2020;10(1):9531. doi:10.1038/s41598-020-65737-z

Huang L, Xiao X, Li S, et al. CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun. Oct 5 2012;426(4):498-503. doi:10.1016/j.bbrc.2012.08.110

Reeves MJ, Goetz KE, Guan B, et al. Genotype-phenotype associations in a large PRPH2-related retinopathy cohort. Hum Mutat. Sep 2020;41(9):1528-1539. doi:10.1002/humu.24065

Oishi A, Fujinami K, Mawatari G, et al. Genetic and Phenotypic Landscape of PRPH2-Associated Retinal Dystrophy in Japan. Genes (Basel). Nov 18 2021;12(11)doi:10.3390/genes12111817

Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Am J Hum Genet. Jun 1 2017;100(6):895-906. doi:10.1016/j.ajhg.2017.04.015

Nishiguchi KM, Ikeda Y, Fujita K, et al. Phenotypic Features of Oguchi Disease and Retinitis Pigmentosa in Patients with S-Antigen Mutations: A Long-Term Follow-up Study. Ophthalmology. Nov 2019;126(11):1557-1566. doi:10.1016/j.ophtha.2019.05.027

Miyake Y, Horiguchi M, Suzuki S, Kondo M, Tanikawa A. Electrophysiological findings in patients with Oguchi's disease. Jpn J Ophthalmol. 1996;40(4):511-9.

Murakami Y, Koyanagi Y, Fukushima M, et al. Genotype and Long-term Clinical Course of Bietti Crystalline Dystrophy in Korean and Japanese Patients. Ophthalmol Retina. Dec 2021;5(12):1269-1279. doi:10.1016/j.oret.2021.02.009

de Carvalho ER, Robson AG, Arno G, Boon CJF, Webster AA, Michaelides M. Enhanced S-Cone Syndrome: Spectrum of Clinical, Imaging, Electrophysiologic, and Genetic Findings in a Retrospective Case Series of 56 Patients. Ophthalmol Retina. Feb 2021;5(2):195-214. doi:10.1016/j.oret.2020.07.008

Mears AJ, Kondo M, Swain PK, et al. Nrl is required for rod photoreceptor development. Nat Genet. Dec 2001;29(4):447-52. doi:10.1038/ng774

ダウンロード

公開済


投稿日時: 2023-10-23 07:22:48 UTC

公開日時: 2023-10-26 10:21:17 UTC
研究分野
臨床医学