Specification of Variant Interpretation Guidelines for Inherited Retinal Dystrophy in Japan
DOI:
https://doi.org/10.51094/jxiv.538Keywords:
inherited retinal dystrophy, ACMG/AMP guidelines, genetic diagnosis, variant interpretation, JapaneseAbstract
The accurate interpretation of sequence variants in inherited retinal dystrophy (IRD) is vital due to the significant genetic heterogeneity observed in this disorder. To achieve consistent and accurate diagnoses, it is essential to establish standardized guidelines for variant interpretation. The American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant interpretation serve as the global “cross-disease” standard for classifying variants in Mendelian hereditary disorders. These guidelines propose a systematic approach for categorizing variants into five classes based on various types of evidence, such as population data, computational data, functional data, and segregation data. However, for clinical genetic diagnosis and to ensure standardized diagnosis and treatment criteria, additional specifications based on features associated with each disorder are necessary. In this context, we present a comprehensive framework outlining the newly specified ACMG/AMP rules tailored explicitly for IRD in the Japanese population. These guidelines consider disease frequencies, allele frequencies, and both phenotypic and genotypic characteristics unique to IRD in the Japanese population. Adjustments and modifications have been incorporated to reflect the specific requirements of the population. By incorporating these IRD-specific factors and refining the existing ACMG/AMP guidelines, we aim to enhance the accuracy and consistency of variant interpretation in IRD cases, particularly in the Japanese population. These guidelines serve as a valuable resource for ophthalmologists and clinical geneticists involved in the diagnosis and treatment of IRD, providing them with a standardized framework to assess and classify genetic variants.
Conflicts of Interest Disclosure
The authors have no conflicts of interest directly relevant to the content of this article.Downloads *Displays the aggregated results up to the previous day.
References
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. May 2015;17(5):405-24. doi:10.1038/gim.2015.30
Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. Nov 2018;39(11):1517-1524. doi:10.1002/humu.23626
Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. Nov 2018;39(11):1593-1613. doi:10.1002/humu.23630
Iwanami M, Oishi A, Ogino K, et al. Five major sequence variants and copy number variants in the EYS gene account for one-third of Japanese patients with autosomal recessive and simplex retinitis pigmentosa. Mol Vis. 2019;25:766-779.
Nishiguchi KM, Miya F, Mori Y, et al. A hypomorphic variant in EYS detected by genome-wide association study contributes toward retinitis pigmentosa. Commun Biol. Jan 29 2021;4(1):140. doi:10.1038/s42003-021-01662-9
Numa S, Oishi A, Higasa K, et al. EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Sci Rep. Nov 27 2020;10(1):20770. doi:10.1038/s41598-020-77558-1
Yang L, Fujinami K, Ueno S, et al. Genetic Spectrum of EYS-associated Retinal Disease in a Large Japanese Cohort: Identification of Disease-associated Variants with Relatively High Allele Frequency. Sci Rep. Mar 26 2020;10(1):5497. doi:10.1038/s41598-020-62119-3
Walker LC, Hoya M, Wiggins GAR, et al. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet. Jul 6 2023;110(7):1046-1067. doi:10.1016/j.ajhg.2023.06.002
Pejaver V, Byrne AB, Feng BJ, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. Dec 1 2022;109(12):2163-2177. doi:10.1016/j.ajhg.2022.10.013
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. Oct 6 2016;99(4):877-885. doi:10.1016/j.ajhg.2016.08.016
Xiang J, Peng J, Baxter S, Peng Z. AutoPVS1: An automatic classification tool for PVS1 interpretation of null variants. Hum Mutat. Sep 2020;41(9):1488-1498. doi:10.1002/humu.24051
Verbakel SK, van Huet RAC, den Hollander AI, et al. Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum. Invest Ophthalmol Vis Sci. Mar 1 2019;60(4):1192-1203. doi:10.1167/iovs.18-26084
Liu Q, Collin RW, Cremers FP, den Hollander AI, van den Born LI, Pierce EA. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype. PLoS One. 2012;7(8):e43251. doi:10.1371/journal.pone.0043251
Nishiguchi KM, Kunikata H, Fujita K, et al. Association of CRX genotypes and retinal phenotypes confounded by variable expressivity and electronegative electroretinogram. Clin Exp Ophthalmol. Jul 2020;48(5):644-657. doi:10.1111/ceo.13743
Fujinami-Yokokawa Y, Fujinami K, Kuniyoshi K, et al. Clinical and Genetic Characteristics of 18 Patients from 13 Japanese Families with CRX-associated retinal disorder: Identification of Genotype-phenotype Association. Sci Rep. Jun 12 2020;10(1):9531. doi:10.1038/s41598-020-65737-z
Huang L, Xiao X, Li S, et al. CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun. Oct 5 2012;426(4):498-503. doi:10.1016/j.bbrc.2012.08.110
Reeves MJ, Goetz KE, Guan B, et al. Genotype-phenotype associations in a large PRPH2-related retinopathy cohort. Hum Mutat. Sep 2020;41(9):1528-1539. doi:10.1002/humu.24065
Oishi A, Fujinami K, Mawatari G, et al. Genetic and Phenotypic Landscape of PRPH2-Associated Retinal Dystrophy in Japan. Genes (Basel). Nov 18 2021;12(11)doi:10.3390/genes12111817
Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Am J Hum Genet. Jun 1 2017;100(6):895-906. doi:10.1016/j.ajhg.2017.04.015
Nishiguchi KM, Ikeda Y, Fujita K, et al. Phenotypic Features of Oguchi Disease and Retinitis Pigmentosa in Patients with S-Antigen Mutations: A Long-Term Follow-up Study. Ophthalmology. Nov 2019;126(11):1557-1566. doi:10.1016/j.ophtha.2019.05.027
Miyake Y, Horiguchi M, Suzuki S, Kondo M, Tanikawa A. Electrophysiological findings in patients with Oguchi's disease. Jpn J Ophthalmol. 1996;40(4):511-9.
Murakami Y, Koyanagi Y, Fukushima M, et al. Genotype and Long-term Clinical Course of Bietti Crystalline Dystrophy in Korean and Japanese Patients. Ophthalmol Retina. Dec 2021;5(12):1269-1279. doi:10.1016/j.oret.2021.02.009
de Carvalho ER, Robson AG, Arno G, Boon CJF, Webster AA, Michaelides M. Enhanced S-Cone Syndrome: Spectrum of Clinical, Imaging, Electrophysiologic, and Genetic Findings in a Retrospective Case Series of 56 Patients. Ophthalmol Retina. Feb 2021;5(2):195-214. doi:10.1016/j.oret.2020.07.008
Mears AJ, Kondo M, Swain PK, et al. Nrl is required for rod photoreceptor development. Nat Genet. Dec 2001;29(4):447-52. doi:10.1038/ng774
Downloads
Posted
Submitted: 2023-10-23 07:22:48 UTC
Published: 2023-10-26 10:21:17 UTC
License
Copyright (c) 2023
Kaoru Fujinami
Koji M. Nishiguchi
Akio Oishi
Masato Akiyama
Yasuhiro Ikeda
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.