曲率電磁気学:幾何学からのマクスウェル方程式の導出
曲率場シリーズ第III部 (マクスウェルへの最小幾何学的ルート)
DOI:
https://doi.org/10.51094/jxiv.1770キーワード:
曲率電磁気学、 マクスウェルの導出、 構成方程式、 一軸異方性、 ベリー様接続、 アハラノフ=ボーム正則化、 TE/TMモード比、 サブパーセント限界抄録
本研究は、基本場を曲率として扱う曲率電磁学により電磁気学を再構成します。曲率場 Φ\PhiΦ の作用と変分条件を設定し、保存則および連続の方程式がゲージ不変の形で自然に現れるようにすることで、追加の非幾何学的仮定なしにマクスウェル方程式を導出します。静的・動的の双方について、境界寄与・ソース結合・伝播特性を単一の標準化不変量スイートに束ね、従来方程式との同等性(あるいは微小な偏差の登録)を透明に検証できる枠組みを整えます。本稿は「曲率場」シリーズの継続として、Part I(量子領域)および Part II(巨視的重力)で用いた固定ポリシーと検証規範を踏襲します。これにより、一つの曲率場がスケールをまたいで観測量を組織化し、境界値テスト・モード解析・ソース応答チェックから成る再現可能な確認経路を提供します。大上段の統一を宣言するのではなく、読者が独立に監査可能な実務的チェックリストを備えた段階的導出として構成しました。
利益相反に関する開示
著者は開示すべき利益相反はありません。ダウンロード *前日までの集計結果を表示します
引用文献
S. Deser and C. Teitelboim, “Duality transformations of Abelian and non-Abelian gauge fields,” Phys. Rev. D 13, 1592–1597 (1976). DOI:10.1103/PhysRevD.13.1592
M. K. Gaillard and B. Zumino, “Duality rotations for interacting fields,” Nucl. Phys. B 193, 221–244 (1981). DOI:10.1016/0550-3213(81)90527-7
J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Phil. Trans. R. Soc. A 175, 343–361 (1884). DOI:10.1098/rstl.1884.0016
Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115, 485–491 (1959). DOI:10.1103/PhysRev.115.485
M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984). DOI:10.1098/rspa.1984.0023
K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974). DOI:10.1103/PhysRevD.10.2445
O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Zeitschrift für Physik 37, 895–906 (1926). DOI:10.1007/BF01397481
J. M. Overduin and P. S. Wesson, “Kaluza–Klein gravity,” Physics Reports 283, 303–378 (1997). DOI:10.1016/S0370-1573(96)00046-4
A. Ashtekar, “New variables for classical and quantum gravity,” Phys. Rev. Lett. 57, 2244–2247 (1986). DOI:10.1103/PhysRevLett.57.2244
J. F. Barbero, “Real Ashtekar variables for Lorentzian signature space-times,” Phys. Rev. D 51, 5507–5510 (1995). DOI:10.1103/PhysRevD.51.5507
J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51, 659–713 (1979). DOI:10.1103/RevModPhys.51.659
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). DOI:10.1109/TAP.1966.1138693
N. Hitchin, “Generalized Calabi–Yau manifolds,” Q. J. Math. 54(3), 281–308 (2003). DOI:10.1093/qjmath/54.3.281
M. Gualtieri, “Generalized complex geometry,” Annals of Mathematics 174(1), 75–123 (2011). DOI:10.4007/annals.2011.174.1.3
C. Hull and B. Zwiebach, “Double field theory,” JHEP 09, 099 (2009). DOI:10.1088/1126-6708/2009/09/099
F. Cabral and F. S. N. Lobo, “Electrodynamics and spacetime geometry: Astrophysical applications,” Eur. Phys. J. Plus 132, 281 (2017). DOI:10.1140/epjp/i2017-11618-2
F. W. Hehl, Y. N. Obukhov, and B. Rosenow, “Is the quantum Hall effect influenced by the gravitational field?,” Phys. Rev. Lett. 93, 096804 (2004). DOI:10.1103/PhysRevLett.93.096804
L. X. Wang et al., “Origin of non-saturating linear magnetoresistance in Dirac semimetal Cd3As2 nanowires,” Nat. Commun. 7, 10769 (2016). DOI:10.1038/ncomms10769.
H. Peng et al., “Aharonov–Bohm interference in topological insulator Bi2Se3 nanoribbons,” Nat. Mater. 9, 225–229 (2010). DOI:10.1038/nmat2609.
Y. Yan et al., “High-mobility Bi2Se3 nanoplates and angle-dependent magnetotransport,” Sci. Rep. 4, 3817 (2014). DOI:10.1038/srep03817.
M. Kato et al., “Paired h/2e Aharonov–Bohm oscillations with tilted field in an antidot array,” arXiv:0909.1395 (2009). arXiv:0909.1395.
P. I. Dankov, “Two-Resonator Method for Measurement of Dielectric Anisotropy in Multi-Layer Samples,” IEEE Transactions on Microwave Theory and Techniques, 54(4), 1534–1544 (2006). doi:10.1109/TMTT.2006.871247.
V. N. Levcheva, B. N. Hadjistamov, and P. I. Dankov, “Two-Resonator Method for Characterization of Dielectric Substrate Anisotropy,” Bulgarian J. Phys. 35, 33–52 (2008). PDF.
J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies,” Meas. Sci. Technol. 17(6), R55–R70 (2006). DOI:10.1088/0957-0233/17/6/R01.
J. Krupka, “Microwave measurements of electromagnetic properties of materials,” Materials 14(17), 5097 (2021). DOI:10.3390/ma14175097.
A. A. Savchenkov et al., “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007). DOI:10.1364/JOSAB.24.001324.
L. Yu and V. Fernicola, “Temperature–frequency characteristic of a spherical sapphire whispering gallery mode resonator at 13.6 GHz,” Rev. Sci. Instrum. 83, 094903 (2012). DOI:10.1063/1.4746991.
F.W. Hehl and Y. N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Springer, 2003). DOI:10.1007/978-1-4612-0051-2.
Y. N. Obukhov and F. W. Hehl, “Spacetime metric from linear electrodynamics,” Phys. Lett. B 458, 466–470 (1999). DOI:10.1016/S0370-2693(99)00643-7.
F. W. Hehl, Y. N. Obukhov, and G. F. Rubilar, “Spacetime metric from linear electrodynamics II,” Ann. Phys. (Leipzig) 9, SI-71–SI-78 (1999). arXiv:gr-qc/9911096.
J. H. Bardarson, P. W. Brouwer, and J. E. Moore, “Aharonov–Bohm oscillations in disordered topological insulator nanowires,” Phys. Rev. Lett. 105, 156803 (2010). DOI:10.1103/PhysRevLett.105.156803.
Kim, Seung-il, Introducing the Curvature Field Function: Toward a Geometric Formulation of Wavefunction Collapse, jxiv (2025). doi:10.51094/jxiv.1522.
Kim, Seung-il, Curvature Field Formulation of Gravity: Toward a Physical Reconstruction of Spacetime, jxiv (2025). doi:10.51094/jxiv.1579.
H. Bluhm, N. C. Koshnick, J. A. Bert, M. E. Huber, and K. A. Moler, “Persistent Currents in Normal Metal Rings,” Phys. Rev. Lett. 102, 136802 (2009). DOI:10.1103/PhysRevLett.102.136802
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, “Weak localization in graphene flakes,” Phys. Rev. Lett. 100, 056802 (2008). DOI:10.1103/PhysRevLett.100.056802 (arXiv:0707.0140).
O. Millo, S. J. Klepper, M. W. Keller, D. E. Prober, S. Xiong, and A. D. Stone; R. N. Sacks, “Reduction of the mesoscopic conductance–fluctuation amplitude in GaAs/AlGaAs heterojunctions due to spin–orbit scattering,” Phys. Rev. Lett. 65, 1494–1497 (1990). DOI:10.1103/PhysRevLett.65.1494 (see device count and Trange on p. 1494).
T. Kaluza, “On the unification problem in physics” (revised English translation of 1921 paper), Int. J. Mod. Phys. D 27, 1870001 (2018). DOI:10.1142/S0218271818700017
K. R. Amin, S. S. Ray, N. Pal, R. Pandit, and A. Bid, “Exotic multifractal conductance fluctuations in graphene,” Communications Physics 1, 20 (2018). DOI:10.1038/s42005-017-0001-4
B. Grbi´c, R. Leturcq, T. Ihn, K. Ensslin, D. Reuter, and A. D. Wieck, “Strong spin–orbit interactions and weak antilocalization in carbon–doped p–type GaAs/AlGaAs heterostructures” (2007). arXiv:0711.0492
J. Berezovsky and R. M. Westervelt, “Imaging universal conductance fluctuations in mesoscopic graphene” (2009). arXiv:0907.0428
A. Tonomura et al., “Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave,” Phys. Rev. Lett. 56, 792–795 (1986). DOI:10.1103/PhysRevLett.56.792
N. Osakabe et al., “Experimental confirmation of Aharonov–Bohm effect using a toroidal magnetic field confined by a superconductor,” Phys. Rev. A 34, 815–822 (1986). DOI:10.1103/PhysRevA.34.815
A. E. Hansen et al., “Mesoscopic decoherence in Aharonov–Bohm rings,” Phys. Rev. B 64, 045327 (2001). DOI:10.1103/PhysRevB.64.045327
M. Sigrist et al., “Phase coherence in the inelastic cotunneling regime,” Phys. Rev. Lett. 96, 036804 (2006). DOI:10.1103/PhysRevLett.96.036804
E. M. Q. Jariwala et al., “Diamagnetic persistent current in diffusive normal-metal rings,” Phys. Rev. Lett. 86, 1594–1597 (2001). DOI:10.1103/PhysRevLett.86.1594
W. D. Oliver et al., “Mach–Zehnder interferometry in a strongly driven superconducting qubit,” Science 310, 1653–1657 (2005). DOI:10.1126/science.1119678
S. N. Shevchenko, S. Ashhab, and F. Nori, “Landau–Zener–Stückelberg interferometry,” Physics Reports 492, 1–30 (2010). doi:10.1016/j.physrep.2010.03.002. Preprint: arXiv:0911.1917.
J. Stehlik et al., “Landau–Zener–Stückelberg interferometry of asingle-electron charge qubit,” Phys. Rev. B 86, 121303(R) (2012). DOI:10.1103/PhysRevB.86.121303
M. Heiblum et al., “Coherence and phase-sensitive measurements with a quantum dot in an Aharonov–Bohm interferometer,” Physica B 227, 147–154 (1996). DOI:10.1016/0921-4526(96)00378-X
H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, “Observation of ‘Partial Coherence’ in an Aharonov–Bohm Interferometer with a Quantum Dot,” Phys. Rev. Lett. 92, 176802 (2004). DOI:10.1103/PhysRevLett.92.176802.
R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, “Observation of h/e Aharonov–Bohm oscillations in normal–metal rings,” Phys. Rev. Lett. 54, 2696–2699 (1985). DOI:10.1103/PhysRevLett.54.2696
V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober, “Observation of Aharonov–Bohm electron interference effects with periods h/e and h/2e in individual micron–size, normal-metal rings,” Phys. Rev. Lett. 55, 1610–1613 (1985). DOI:10.1103/PhysRevLett.55.1610
C. P. Umbach, C. Van Haesendonck, R. B. Laibowitz, S. Washburn, and R. A. Webb, “Direct observation of ensemble averaging of the Aharonov–Bohm effect in normal–metal loops,” Phys. Rev. Lett. 56, 386–389(1986). DOI:10.1103/PhysRevLett.56.386
M. Büttiker, “Four–terminal phase–coherent conductance,” Phys. Rev. Lett. 57, 1761–1764 (1986). DOI:10.1103/PhysRevLett.57.1761
M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Dev. 32, 317–334 (1988). DOI:10.1147/rd.323.0317
R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, “Phase measurement in a quantum dot via a double–slit interference,” Nature 385, 417–420 (1997). DOI:10.1038/385417a0
S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, “Observation of Aharonov–Bohm conductance oscillations in a graphene ring,” Phys. Rev. B 77, 085413 (2008). DOI:10.1103/PhysRevB.77.085413
B. Hackens, F. Martins, T. Ouisse, H. Sellier, S. Bollaert, X. Wallart, A. Cappy, J. Chevrier, V. Bayot, and S. Huant, “Imaging and controlling electron transport inside a quantum ring,” Nature Physics 2, 826–830 (2006). DOI:10.1038/nphys459.
Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, “An electronic Mach–Zehnder interferometer,” Nature 422, 415–418 (2003). DOI:10.1038/nature01503
N. Ofek, M. Heiblum, I. Neder, M. Mahalu, and V. Umansky, “Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime,” Proc. Natl. Acad. Sci. USA 107, 5276–5281 (2010). DOI:10.1073/pnas.0912624107
M. A. Castellanos-Beltran, D. Quezada, R. A. Zadorozhny, R. A. Buhrman, and D. C. Ralph, “Measurement of the full distribution of persistent current in normal–metal rings,” Phys. Rev. Lett. 110, 156801 (2013). DOI:10.1103/PhysRevLett.110.156801
A. C. Bleszynski-Jayich et al., “Persistent currents in normal metal rings,” Science 326, 272–275 (2009). DOI:10.1126/science.1178139
F. Pierre, A. B. Gougam, A. Anthore, H. Pothier, D. Esteve, and N. O. Birge, “Dephasing of electrons in mesoscopic metal wires,” Phys. Rev. B 68, 085413 (2003). DOI:10.1103/PhysRevB.68.085413
INTERMAGNET, “International Real-time Magnetic Observatory Network (data portal and documentation),” (accessed 2025). https://intermagnet.org/; data portal: https://imag-data.bgs.ac.uk/GIN_V1/GINForms2.
JHU/APL SuperMAG, “Global ground-based magnetometer collaboration (data & APIs),” (accessed 2025). https://supermag.jhuapl.edu/.
NOAA NCEI, “Geomagnetic data products and indices (WDS/WDC),” (accessed 2025). Data portal; Indices.
WDC for Geomagnetism, Kyoto, “Dst/AE index services (final, provisional, quicklook),” (accessed 2025). Dst directory. AE directory.
J. Dauber, M. Oellers, F. Venn, A. Epping, K. Watanabe, T. Taniguchi, F. Hassler, and C. Stampfer, Aharonov–Bohm oscillations and magnetic focusing in ballistic graphene rings, Phys. Rev. B 96, 205407 (2017). doi:10.1103/PhysRevB.96.205407.
J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and J. Krupka, Room temperature measurement of the anisotropic loss tangent of sapphire using the whispering gallery mode technique, IEEE Trans. Ultrason., Ferroelect., Freq. Control 53(1), 34–41 (2006). doi:10.1109/TUFFC.2006.1588389.
V. M. Gvozdikov, Yu. V. Pershin, E. Steep, A. G. M. Jansen, and P. Wyder, de Haas–van Alphen oscillations in the quasi-two-dimensional organic conductor κ-(ET)2Cu(NCS)2: The magnetic breakdown approach, Phys. Rev. B 65, 165102 (2002). doi:10.1103/PhysRevB.65.165102.
ダウンロード
公開済
投稿日時: 2025-10-19 16:03:30 UTC
公開日時: 2025-10-24 01:35:34 UTC
ライセンス
Copyright(c)2025
kim, seungil-il
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
