Preprint / Version 1

Curvature Electromagnetism: Deriving Maxwell from Geometry

Part III of the Curvature Field Series (A Minimal Geometric Route to Maxwell)

##article.authors##

  • seungil-il kim Independent Researcher

DOI:

https://doi.org/10.51094/jxiv.1770

Keywords:

Curvature Electromagnetism, Deriving Maxwell, Constitutive laws, Uniaxial anisotropy, Berry-like connection, Aharonov–Bohm regularization, TE/TM mode ratio, Sub-percent limit

Abstract

This work re-forms electromagnetism through Curvature Electromagnetism, treating the fundamental field as curvature. We set the action of the curvature field Φ\PhiΦ and the associated variational conditions so that conservation laws and the continuity equation arise in gauge-invariant form, deriving Maxwell’s equations without introducing additional non-geometric hypotheses. For both static and dynamical configurations, we gather boundary contributions, source coupling, and propagation properties into a single suite of standardized invariants, enabling a transparent equivalence check—with room to register any small deviations—against the conventional equations. The construction continues the Curvature Field series and preserves the same fixed policy and validation rules used in Part I (quantum domain) and Part II (macroscopic gravity). In this way, one curvature field organizes observables across scales, while providing a reproducible verification path (boundary-value tests, mode analysis, and source–response checks). Rather than declaring a grand unification, the paper is designed as a stepwise derivation with a practical checklist that readers can independently audit.

Conflicts of Interest Disclosure

The author declares no competing interests.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

S. Deser and C. Teitelboim, “Duality transformations of Abelian and non-Abelian gauge fields,” Phys. Rev. D 13, 1592–1597 (1976). DOI:10.1103/PhysRevD.13.1592

M. K. Gaillard and B. Zumino, “Duality rotations for interacting fields,” Nucl. Phys. B 193, 221–244 (1981). DOI:10.1016/0550-3213(81)90527-7

J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Phil. Trans. R. Soc. A 175, 343–361 (1884). DOI:10.1098/rstl.1884.0016

Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115, 485–491 (1959). DOI:10.1103/PhysRev.115.485

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984). DOI:10.1098/rspa.1984.0023

K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974). DOI:10.1103/PhysRevD.10.2445

O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Zeitschrift für Physik 37, 895–906 (1926). DOI:10.1007/BF01397481

J. M. Overduin and P. S. Wesson, “Kaluza–Klein gravity,” Physics Reports 283, 303–378 (1997). DOI:10.1016/S0370-1573(96)00046-4

A. Ashtekar, “New variables for classical and quantum gravity,” Phys. Rev. Lett. 57, 2244–2247 (1986). DOI:10.1103/PhysRevLett.57.2244

J. F. Barbero, “Real Ashtekar variables for Lorentzian signature space-times,” Phys. Rev. D 51, 5507–5510 (1995). DOI:10.1103/PhysRevD.51.5507

J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51, 659–713 (1979). DOI:10.1103/RevModPhys.51.659

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). DOI:10.1109/TAP.1966.1138693

N. Hitchin, “Generalized Calabi–Yau manifolds,” Q. J. Math. 54(3), 281–308 (2003). DOI:10.1093/qjmath/54.3.281

M. Gualtieri, “Generalized complex geometry,” Annals of Mathematics 174(1), 75–123 (2011). DOI:10.4007/annals.2011.174.1.3

C. Hull and B. Zwiebach, “Double field theory,” JHEP 09, 099 (2009). DOI:10.1088/1126-6708/2009/09/099

F. Cabral and F. S. N. Lobo, “Electrodynamics and spacetime geometry: Astrophysical applications,” Eur. Phys. J. Plus 132, 281 (2017). DOI:10.1140/epjp/i2017-11618-2

F. W. Hehl, Y. N. Obukhov, and B. Rosenow, “Is the quantum Hall effect influenced by the gravitational field?,” Phys. Rev. Lett. 93, 096804 (2004). DOI:10.1103/PhysRevLett.93.096804

L. X. Wang et al., “Origin of non-saturating linear magnetoresistance in Dirac semimetal Cd3As2 nanowires,” Nat. Commun. 7, 10769 (2016). DOI:10.1038/ncomms10769.

H. Peng et al., “Aharonov–Bohm interference in topological insulator Bi2Se3 nanoribbons,” Nat. Mater. 9, 225–229 (2010). DOI:10.1038/nmat2609.

Y. Yan et al., “High-mobility Bi2Se3 nanoplates and angle-dependent magnetotransport,” Sci. Rep. 4, 3817 (2014). DOI:10.1038/srep03817.

M. Kato et al., “Paired h/2e Aharonov–Bohm oscillations with tilted field in an antidot array,” arXiv:0909.1395 (2009). arXiv:0909.1395.

P. I. Dankov, “Two-Resonator Method for Measurement of Dielectric Anisotropy in Multi-Layer Samples,” IEEE Transactions on Microwave Theory and Techniques, 54(4), 1534–1544 (2006). doi:10.1109/TMTT.2006.871247.

V. N. Levcheva, B. N. Hadjistamov, and P. I. Dankov, “Two-Resonator Method for Characterization of Dielectric Substrate Anisotropy,” Bulgarian J. Phys. 35, 33–52 (2008). PDF.

J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies,” Meas. Sci. Technol. 17(6), R55–R70 (2006). DOI:10.1088/0957-0233/17/6/R01.

J. Krupka, “Microwave measurements of electromagnetic properties of materials,” Materials 14(17), 5097 (2021). DOI:10.3390/ma14175097.

A. A. Savchenkov et al., “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007). DOI:10.1364/JOSAB.24.001324.

L. Yu and V. Fernicola, “Temperature–frequency characteristic of a spherical sapphire whispering gallery mode resonator at 13.6 GHz,” Rev. Sci. Instrum. 83, 094903 (2012). DOI:10.1063/1.4746991.

F.W. Hehl and Y. N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Springer, 2003). DOI:10.1007/978-1-4612-0051-2.

Y. N. Obukhov and F. W. Hehl, “Spacetime metric from linear electrodynamics,” Phys. Lett. B 458, 466–470 (1999). DOI:10.1016/S0370-2693(99)00643-7.

F. W. Hehl, Y. N. Obukhov, and G. F. Rubilar, “Spacetime metric from linear electrodynamics II,” Ann. Phys. (Leipzig) 9, SI-71–SI-78 (1999). arXiv:gr-qc/9911096.

J. H. Bardarson, P. W. Brouwer, and J. E. Moore, “Aharonov–Bohm oscillations in disordered topological insulator nanowires,” Phys. Rev. Lett. 105, 156803 (2010). DOI:10.1103/PhysRevLett.105.156803.

Kim, Seung-il, Introducing the Curvature Field Function: Toward a Geometric Formulation of Wavefunction Collapse, jxiv (2025). doi:10.51094/jxiv.1522.

Kim, Seung-il, Curvature Field Formulation of Gravity: Toward a Physical Reconstruction of Spacetime, jxiv (2025). doi:10.51094/jxiv.1579.

H. Bluhm, N. C. Koshnick, J. A. Bert, M. E. Huber, and K. A. Moler, “Persistent Currents in Normal Metal Rings,” Phys. Rev. Lett. 102, 136802 (2009). DOI:10.1103/PhysRevLett.102.136802

F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, “Weak localization in graphene flakes,” Phys. Rev. Lett. 100, 056802 (2008). DOI:10.1103/PhysRevLett.100.056802 (arXiv:0707.0140).

O. Millo, S. J. Klepper, M. W. Keller, D. E. Prober, S. Xiong, and A. D. Stone; R. N. Sacks, “Reduction of the mesoscopic conductance–fluctuation amplitude in GaAs/AlGaAs heterojunctions due to spin–orbit scattering,” Phys. Rev. Lett. 65, 1494–1497 (1990). DOI:10.1103/PhysRevLett.65.1494 (see device count and Trange on p. 1494).

T. Kaluza, “On the unification problem in physics” (revised English translation of 1921 paper), Int. J. Mod. Phys. D 27, 1870001 (2018). DOI:10.1142/S0218271818700017

K. R. Amin, S. S. Ray, N. Pal, R. Pandit, and A. Bid, “Exotic multifractal conductance fluctuations in graphene,” Communications Physics 1, 20 (2018). DOI:10.1038/s42005-017-0001-4

B. Grbi´c, R. Leturcq, T. Ihn, K. Ensslin, D. Reuter, and A. D. Wieck, “Strong spin–orbit interactions and weak antilocalization in carbon–doped p–type GaAs/AlGaAs heterostructures” (2007). arXiv:0711.0492

J. Berezovsky and R. M. Westervelt, “Imaging universal conductance fluctuations in mesoscopic graphene” (2009). arXiv:0907.0428

A. Tonomura et al., “Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave,” Phys. Rev. Lett. 56, 792–795 (1986). DOI:10.1103/PhysRevLett.56.792

N. Osakabe et al., “Experimental confirmation of Aharonov–Bohm effect using a toroidal magnetic field confined by a superconductor,” Phys. Rev. A 34, 815–822 (1986). DOI:10.1103/PhysRevA.34.815

A. E. Hansen et al., “Mesoscopic decoherence in Aharonov–Bohm rings,” Phys. Rev. B 64, 045327 (2001). DOI:10.1103/PhysRevB.64.045327

M. Sigrist et al., “Phase coherence in the inelastic cotunneling regime,” Phys. Rev. Lett. 96, 036804 (2006). DOI:10.1103/PhysRevLett.96.036804

E. M. Q. Jariwala et al., “Diamagnetic persistent current in diffusive normal-metal rings,” Phys. Rev. Lett. 86, 1594–1597 (2001). DOI:10.1103/PhysRevLett.86.1594

W. D. Oliver et al., “Mach–Zehnder interferometry in a strongly driven superconducting qubit,” Science 310, 1653–1657 (2005). DOI:10.1126/science.1119678

S. N. Shevchenko, S. Ashhab, and F. Nori, “Landau–Zener–Stückelberg interferometry,” Physics Reports 492, 1–30 (2010). doi:10.1016/j.physrep.2010.03.002. Preprint: arXiv:0911.1917.

J. Stehlik et al., “Landau–Zener–Stückelberg interferometry of asingle-electron charge qubit,” Phys. Rev. B 86, 121303(R) (2012). DOI:10.1103/PhysRevB.86.121303

M. Heiblum et al., “Coherence and phase-sensitive measurements with a quantum dot in an Aharonov–Bohm interferometer,” Physica B 227, 147–154 (1996). DOI:10.1016/0921-4526(96)00378-X

H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, “Observation of ‘Partial Coherence’ in an Aharonov–Bohm Interferometer with a Quantum Dot,” Phys. Rev. Lett. 92, 176802 (2004). DOI:10.1103/PhysRevLett.92.176802.

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, “Observation of h/e Aharonov–Bohm oscillations in normal–metal rings,” Phys. Rev. Lett. 54, 2696–2699 (1985). DOI:10.1103/PhysRevLett.54.2696

V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober, “Observation of Aharonov–Bohm electron interference effects with periods h/e and h/2e in individual micron–size, normal-metal rings,” Phys. Rev. Lett. 55, 1610–1613 (1985). DOI:10.1103/PhysRevLett.55.1610

C. P. Umbach, C. Van Haesendonck, R. B. Laibowitz, S. Washburn, and R. A. Webb, “Direct observation of ensemble averaging of the Aharonov–Bohm effect in normal–metal loops,” Phys. Rev. Lett. 56, 386–389(1986). DOI:10.1103/PhysRevLett.56.386

M. Büttiker, “Four–terminal phase–coherent conductance,” Phys. Rev. Lett. 57, 1761–1764 (1986). DOI:10.1103/PhysRevLett.57.1761

M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Dev. 32, 317–334 (1988). DOI:10.1147/rd.323.0317

R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, “Phase measurement in a quantum dot via a double–slit interference,” Nature 385, 417–420 (1997). DOI:10.1038/385417a0

S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, “Observation of Aharonov–Bohm conductance oscillations in a graphene ring,” Phys. Rev. B 77, 085413 (2008). DOI:10.1103/PhysRevB.77.085413

B. Hackens, F. Martins, T. Ouisse, H. Sellier, S. Bollaert, X. Wallart, A. Cappy, J. Chevrier, V. Bayot, and S. Huant, “Imaging and controlling electron transport inside a quantum ring,” Nature Physics 2, 826–830 (2006). DOI:10.1038/nphys459.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, “An electronic Mach–Zehnder interferometer,” Nature 422, 415–418 (2003). DOI:10.1038/nature01503

N. Ofek, M. Heiblum, I. Neder, M. Mahalu, and V. Umansky, “Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime,” Proc. Natl. Acad. Sci. USA 107, 5276–5281 (2010). DOI:10.1073/pnas.0912624107

M. A. Castellanos-Beltran, D. Quezada, R. A. Zadorozhny, R. A. Buhrman, and D. C. Ralph, “Measurement of the full distribution of persistent current in normal–metal rings,” Phys. Rev. Lett. 110, 156801 (2013). DOI:10.1103/PhysRevLett.110.156801

A. C. Bleszynski-Jayich et al., “Persistent currents in normal metal rings,” Science 326, 272–275 (2009). DOI:10.1126/science.1178139

F. Pierre, A. B. Gougam, A. Anthore, H. Pothier, D. Esteve, and N. O. Birge, “Dephasing of electrons in mesoscopic metal wires,” Phys. Rev. B 68, 085413 (2003). DOI:10.1103/PhysRevB.68.085413

INTERMAGNET, “International Real-time Magnetic Observatory Network (data portal and documentation),” (accessed 2025). https://intermagnet.org/; data portal: https://imag-data.bgs.ac.uk/GIN_V1/GINForms2.

JHU/APL SuperMAG, “Global ground-based magnetometer collaboration (data & APIs),” (accessed 2025). https://supermag.jhuapl.edu/.

NOAA NCEI, “Geomagnetic data products and indices (WDS/WDC),” (accessed 2025). Data portal; Indices.

WDC for Geomagnetism, Kyoto, “Dst/AE index services (final, provisional, quicklook),” (accessed 2025). Dst directory. AE directory.

J. Dauber, M. Oellers, F. Venn, A. Epping, K. Watanabe, T. Taniguchi, F. Hassler, and C. Stampfer, Aharonov–Bohm oscillations and magnetic focusing in ballistic graphene rings, Phys. Rev. B 96, 205407 (2017). doi:10.1103/PhysRevB.96.205407.

J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and J. Krupka, Room temperature measurement of the anisotropic loss tangent of sapphire using the whispering gallery mode technique, IEEE Trans. Ultrason., Ferroelect., Freq. Control 53(1), 34–41 (2006). doi:10.1109/TUFFC.2006.1588389.

V. M. Gvozdikov, Yu. V. Pershin, E. Steep, A. G. M. Jansen, and P. Wyder, de Haas–van Alphen oscillations in the quasi-two-dimensional organic conductor κ-(ET)2Cu(NCS)2: The magnetic breakdown approach, Phys. Rev. B 65, 165102 (2002). doi:10.1103/PhysRevB.65.165102.

Downloads

Posted


Submitted: 2025-10-19 16:03:30 UTC

Published: 2025-10-24 01:35:34 UTC
Section
Physics