プレプリント / バージョン3

Bayesian optimization for parameter estimation of a local particle filter

##article.authors##

  • AKAMI, Shoichi Graduate School of Life and Environmental Sciences, University of Tsukuba
  • Keiichi KONDO Meteorological Research Institute, Japan Meteorological Agency
  • Hiroshi L. TANAKA Organization of Volcanic Disaster Mitigation
  • Mizuo KAJINO Meteorological Research Institute, Japan Meteorological Agency

DOI:

https://doi.org/10.51094/jxiv.1242

キーワード:

Local particle filter、 Parameter estimation、 Bayesian optimization、 Gaussian process regression

抄録

Particle filter (PF) is a powerful data assimilation method that does not assume the linearity in the time evolution of errors or Gaussian error distributions. However, the number of particles required increases exponentially with the dimensions of the dynamical system, which is a bottleneck when applying the PF to numerical weather prediction (NWP) models. Local particle filter (LPF) realizes the PF in high-dimensional systems by the localization, but it has high parameter sensitivity and is challenging to operate stably. On the other hand, when using a nonlinear observation operator, it is possible to estimate the analysis with higher accuracy than the local ensemble transformation Kalman filter (LETKF) by setting the weight inflation factor, which smooths the weights among particles, and the localization scale, to the optima. Therefore, an efficient parameter estimation method is required.

Bayesian optimization (BO) is a method for efficiently solving optimization problems of black box functions with high computational costs, and is used for parameter optimization of neural networks. Therefore, we estimated the weight inflation factor and localization scale that minimize the root mean square error between the observations and the forecasts (RMSE(o vs. f)) in the LPF using the BO in the Lorenz-96 40-variable model (L96). As a result, the BO was able to model the response surface with high accuracy and estimate the weight inflation factor and localization scale with accuracy equal to or better than random sampling (RS). In addition, this result was robust to changes in the observation set. However, as the number of parameters to be estimated increased, the BO did not always obtain estimations close to the optima, depending on the observation set.

This study has clarified that the BO contributes to improving the practicality of the LPF, and it has also provided suggestions on how the BO should be developed in the future. Since the LPF can estimate high-precision analysis even in strongly nonlinear phenomena, the development of the technology in this study is expected to improve the accuracy of heavy rainfall prediction in the future. The BO will be helpful in atmospheric model experiments for the practical application of the LPF.

利益相反に関する開示

There is no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129%3C0420:ASWTET%3E2.0.CO;2.

Byrd, R. H., and P. Lu, J. Nocedal, C. Zhu, 1995: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput., 16(5), 1190-1208, https://doi.org/10.1137/0916069.

Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38(2), 97–110, https://doi.org/10.3402/tellusa.v38i2.11706.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162, https://doi.org/10.1029/94JC00572.

Farchi, A., and M. Bocquet, 2018: Review article: Comparison of local particle filters and new implementations. Nonlinear Processes Geophys., 25, 765-807, https://doi.org/10.5194/npg-25-765-2018.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757, https://doi.org/10.1002/qj.49712555417.

González, J., and Z. Dai, P. Hennig, N. D. Lawrence, 2015: Batch Bayesian Optimization via Local Penalization. arXiv, https://arxiv.org/abs/1505.08052.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140:2, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.

Kondo, K., and T. Miyoshi, 2019: Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model. Nonlinear Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019.

Kotsuki, S., T. Miyoshi, K. Kondo, and R. Potthast, 2022: A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF, Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022.

Loeppky, J. L., J. Sacks, and W. J. Welch, 2009: Choosing the Sample Size of a Computer Experiment: A Practical Guide. Technometrics, 51(4), 366–376, https://doi.org/10.1198/TECH.2009.08040.

Lorenz, E. N., and K. A. Emanuel, 1998: Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model. J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

Lunderman, S., M. Morzfeld, and D. J. Posselt, 2021: Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above. Tellus A, 73(1), p. 1924952, https://doi.org/10.1080/16000870.2021.1924952.

Mckay, M. D., R. J. Beckman, and W. J. Conover, 2000: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics, 42(1), 55–61, https://doi.org/10.1080/00401706.2000.10485979.

Mockus, J., 1989: Mathematics and its Applications: Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Academic Publishers, 270pp. https://doi.org/10.1007/978-94-009-0909-0.

Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Climate Dynamics, 20, 175–191, https://doi.org/10.1007/s00382-002-0268-2.

Otsuka, S., and T. Miyoshi, 2015: A Bayesian Optimization Approach to Multimodel Ensemble Kalman Filter with a Low-Order Model. Mon. Wea. Rev., 143, 2001–2012, https://doi.org/10.1175/MWR-D-14-00148.1.

Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56, 415–428, https://doi.org/10.1111/j.1600-0870.2004.00076.x.

Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391–405, https://doi.org/10.5194/npg-23-391-2016.

Poterjoy, J., 2016: A Localized Particle Filter for High-Dimensional Nonlinear Systems. Mon. Wea. Rev., 144, 59–76, https://doi.org/10.1175/MWR-D-15-0163.1.

Poterjoy, J., and J. L. Anderson, 2016: Efficient Assimilation of Simulated Observations in a High-Dimensional Geophysical System Using a Localized Particle Filter. Mon. Wea. Rev., 144, 2007–2020, https://doi.org/10.1175/MWR-D-15-0322.1.

Potthast, R., A. Walter, and A. Rhodin, 2019: A Localized Adaptive Particle Filter within an Operational NWP Framework. Mon. Wea. Rev., 147, 345–362, https://doi.org/10.1175/MWR-D-18-0028.1.

Rasmussen, C. E., and H. Nickisch, 2010: Gaussian Processes for Machine Learning (GPML) Toolbox. J. Mach. Learn. Res, 11, 3011–3015, https://dl.acm.org/doi/abs/10.5555/1756006.1953029.

Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes for Machine Learning. the MIT Press, 266pp.

Russo, D., B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, 2020: A Tutorial on Thompson Sampling. arXiv, https://arxiv.org/abs/1707.02038.

Sawada, Y., 2020: Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model. J. Geophys. Res.: Atmos., 125, e2020JD032688, https://doi.org/10.1029/2020JD032688.

Shahriari, B., and K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, 2016: Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE, 104(1), 148-175, https://doi.org/10.1109/JPROC.2015.2494218.

Snoek, J., H. Larochelle, and R. P. Adams, 2012: Practical Bayesian Optimization of Machine Learning Algorithms, https://doi.org/10.48550/arXiv.1206.2944.

Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to High-Dimensional Particle Filtering. Mon. Wea. Rev., 136, 4629–4640, https://doi.org/10.1175/2008MWR2529.1.

Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci., 15, 293–305. https://doi.org/10.1007/s10596-010-9207-1.

公開済


投稿日時: 2025-05-08 04:46:33 UTC

公開日時: 2025-05-09 09:13:15 UTC — 2025-09-02 01:25:10 UTCに更新

バージョン

改版理由

Because we submitted the revised paper.
研究分野
地球科学・天文学