Quasi-likelihood ratio tests and the Bartlett-type correction for improved inferences of the modified Poisson and least-squares regressions for binary outcomes
DOI:
https://doi.org/10.51094/jxiv.1037キーワード:
generalized linear model、 estimating equation、 quasi-likelihood、 bootstrap、 separation problem抄録
Logistic regression has been a standard multivariate analysis method for binary outcomes in clinical and epidemiological studies; however, the odds ratios cannot be interpreted as effect measures directly. The modified Poisson and least-squares regressions are alternative effective methods to provide risk ratio and risk difference estimates. However, their ordinary Wald-type inference methods using the sandwich variance estimator seriously underestimate the statistical errors under small or moderate sample settings. In this article, we develop alternative likelihood-ratio-type inference methods for these regression analyses based on Wedderburn’s quasi-likelihood theory. A remarkable advantage of the proposed methods is that we have correct information for the true models (i.e., the binomial log-linear and linear models). Using this modeling information, we develop an effective parametric bootstrap algorithm for accurate inferences. In particular, we propose the Bartlett-type mean calibration approach and bootstrap test-based approach for the quasi-likelihood ratio statistic. In addition, we propose another computationally efficient modified approximate quasi-likelihood ratio statistic whose large sample distribution can be approximated by the chi-squared distribution and its bootstrap inference method. In numerical studies by simulations, the new bootstrap-based methods outperformed the current standard Wald-type confidence interval. We applied these methods to a clinical study of epilepsy.
利益相反に関する開示
The authors declare no conflicts of interest regarding this article.ダウンロード *前日までの集計結果を表示します
引用文献
Greenland S. Interpretation and choice of effect measures in epidemiologic analysis. Am J Epidemiol. 1987;125:761-768.
Nurminen M. To use or not to use the odds ratio in epidemiologic analyses. Eur J Epidemiol. 1995;11:365-371.
Rothman KJ, Greenland G, Lash TL. Modern Epidemiology. 3rd ed. Lippincott Williams & Wilkins; 2008.
McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157:940-3.
Wallenstein S, Bodian C. Epidemiologic programs for computers and calculators. Inferences on odds ratios, relative risks, and risk differences based on standard regression programs. Am J Epidemiol. 1987;126:346-55.
Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702-6.
Cheung YB. A modified least-squares regression approach to the estimation of risk difference. Am J Epidemiol. 2007;166:1337-44.
Nelder JA, Wedderburn RWM. Generalized linear models. J Royal Stat Soc A. 1972;135:370-384.
Godambe VP, Heyde CC. Quasi-likelihood and optimal estimation. Int Stat Rev. 1987;55:231-244.
Wedderburn RWM. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika. 1974;61:439-447.
White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982;50:1-25.
Gosho M, Ishii R, Noma H, Maruo K. A comparison of bias-adjusted generalized estimating equations for sparse binary data in small-sample longitudinal studies. Stat Med. 2023;42:2711-2727.
Gosho M, Noma H, Maruo K. Practical review and comparison of modified covariance estimators for linear mixed models in small-sample longitudinal studies with missing data. Int Stat Rev. 2021;89:550-572.
Albert A, Anderson JA. On the existence of the maximum likelihood estimates in logistic regression models. Biometrika. 1984;71:1-10.
Zorn C. A solution to separation in binary response models. Polit Anal. 2005;13:157-170.
Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med. 2006;25:4216-4226.
Lang JB. Score and profile likelihood confidence intervals for contingency table parameters. Stat Med. 2008;27:5975-90.
Bartlett MS. Properties of sufficiency and statistical tests. Proc Royal Soc A. 1937;160:268-282.
Cordeiro GM, Cribari-Neto F. An Introduction to Bartlett Correction and Bias Reduction. Springer; 2014.
Plackett RL. A historical note on the method of least squares. Biometrika. 1949;36:458-460.
David FN, Neyman J. Extension of the Markoff theorem on least squares. Stat Res Mem. 1938;2:105-116.
Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13-22.
Burden RL, Faires JD. Numerical Analysis. 9th ed ed. Cengage Learning; 2011.
Agresti A. Categorical Data Analysis. 3rd ed. Wiley; 2013.
Venzon DJ, Moolgavkar SH. A method for computing profile likelihood-based confidence intervals. Appl Statist. 1988;37:87-94.
Efron B, Tibshirani R. An Introduction to the Bootstrap. CRC Press; 1994.
Arai Y, Okanishi T, Noma H, et al. Prognostic factors for employment outcomes in patients with a history of childhood-onset drug-resistant epilepsy. Front Pediatr. 2023;11:1173126.
Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30:3304-3312.
Uno S, Noma H, Gosho M. Firth-type penalized methods of the modified Poisson and least-squares regression analyses for binary outcomes. Biom J. 2024;66:e202400004.
Cordeiro GM, McCullagh P. Bias correction in generalized linear models. J Royal Stat Soc B. 1991;53:629-643.
ダウンロード
公開済
投稿日時: 2025-01-10 14:57:39 UTC
公開日時: 2025-01-14 10:37:05 UTC
ライセンス
Copyright(c)2025
Noma, Hisashi
Hiroshi Sunada
Masahiko Gosho
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。