Preprint / Version 2

Collective sperm movement in mammalian reproductive tracts

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.917

Keywords:

Collective sperm movement, Imaging, Mammalian reproductive tracts, Mechanobiology, Mechano-chemical feedback, Sperm motility

Abstract

Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.

Conflicts of Interest Disclosure

The authors declare no competing interests. 

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

R.A. Hess, L.R. De Franca, Spermatogenesis and Cycle of the Seminiferous Epithelium, in: C.Y. Cheng (Ed.), Molecular Mechanisms in Spermatogenesis, Springer New York, New York, NY, 2009: pp. 1–15. https://doi.org/10.1007/978-0-387-09597-4_1.

C.J. Chan, T. Hirashima, Tissue hydraulics in reproduction, Seminars in Cell & Developmental Biology 131 (2022) 124–133. https://doi.org/10.1016/j.semcdb.2022.05.008.

D. Kiyozumi, T. Noda, R. Yamaguchi, T. Tobita, T. Matsumura, K. Shimada, M. Kodani, T. Kohda, Y. Fujihara, M. Ozawa, Z. Yu, G. Miklossy, K.M. Bohren, M. Horie, M. Okabe, M.M. Matzuk, M. Ikawa, NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility, Science 368 (2020) 1132–1135. https://doi.org/10.1126/science.aay5134.

C.X. Zhou, Y.-L. Zhang, L. Xiao, M. Zheng, K.M. Leung, M.Y. Chan, P.S. Lo, L.L. Tsang, H.Y. Wong, L.S. Ho, Y.W. Chung, H.C. Chan, An epididymis-specific β-defensin is important for the initiation of sperm maturation, Nat Cell Biol 6 (2004) 458–464. https://doi.org/10.1038/ncb1127.

T. Noda, M. Ikawa, Physiological function of seminal vesicle secretions on male fecundity, Reprod Medicine & Biology 18 (2019) 241–246. https://doi.org/10.1002/rmb2.12282.

S.S. Suarez, A.A. Pacey, Sperm transport in the female reproductive tract, Human Reproduction Update 12 (2006) 23–37. https://doi.org/10.1093/humupd/dmi047.

M.G. Gervasi, P.E. Visconti, Chang’s meaning of capacitation: A molecular perspective, Molecular Reproduction Devel 83 (2016) 860–874. https://doi.org/10.1002/mrd.22663.

T. Baba, S. Azuma, S. Kashiwabara, Y. Toyoda, Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization, J Biol Chem 269 (1994) 31845–31849.

N. Inoue, Y. Satouh, M. Ikawa, M. Okabe, R. Yanagimachi, Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs, Proc Natl Acad Sci U S A 108 (2011) 20008–20011. https://doi.org/10.1073/pnas.1116965108.

H. Mohri, K. Inaba, S. Ishijima, S.A. Baba, Tubulin-dynein system in flagellar and ciliary movement, Proc Jpn Acad Ser B Phys Biol Sci 88 (2012) 397–415. https://doi.org/10.2183/pjab.88.397.

C. Soler, C.H. Yeung, T.G. Cooper, Development of sperm motility patterns in the murine epididymis, International Journal of Andrology 17 (1994) 271–278. https://doi.org/10.1111/j.1365-2605.1994.tb01253.x.

C.H. Yeung, G. Oberlander, T.G. Cooper, Characterization of the motility of maturing rat spermatozoa by computer-aided objective measurement, Reproduction 96 (1992) 427–441. https://doi.org/10.1530/jrf.0.0960427.

V. Lee, B.T. Hinton, T. Hirashima, Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective, Andrology (2023) andr.13490. https://doi.org/10.1111/andr.13490.

R. Yanagimachi, THE MOVEMENT OF GOLDEN HAMSTER SPERMATOZOA BEFORE AND AFTER CAPACITATION, Reproduction 23 (1970) 193–196. https://doi.org/10.1530/jrf.0.0230193.

S.F. Schoeller, W.V. Holt, E.E. Keaveny, Collective dynamics of sperm cells, Phil. Trans. R. Soc. B 375 (2020) 20190384. https://doi.org/10.1098/rstb.2019.0384.

Y. Kanazawa, T. Omotehara, H. Nakata, T. Hirashima, M. Itoh, Three-dimensional analysis and in vivo imaging for sperm release and transport in the murine seminiferous tubule, Reproduction 164 (2022) 9–18. https://doi.org/10.1530/REP-21-0400.

K. Umezu, G.R. Musina, I.V. Larina, In vivo dynamic volumetric imaging of mouse testis and epididymis with optical coherence tomography, Biology of Reproduction 110 (2024) 365–376. https://doi.org/10.1093/biolre/ioad158.

S. Wang, I.V. Larina, In vivo three-dimensional tracking of sperm behaviors in the mouse oviduct, Development 145 (2018) dev157685. https://doi.org/10.1242/dev.157685.

Y. Ishikawa, T. Usui, M. Yamashita, Y. Kanemori, T. Baba, Surfing and Swimming of Ejaculated Sperm in the Mouse Oviduct1, Biology of Reproduction 94 (2016). https://doi.org/10.1095/biolreprod.115.135418.

Y. Qu, Q. Chen, S. Guo, C. Ma, Y. Lu, J. Shi, S. Liu, T. Zhou, T. Noda, J. Qian, L. Zhang, X. Zhu, X. Lei, Y. Cao, W. Li, W. Li, N. Plachta, M.M. Matzuk, M. Ikawa, E. Duan, Y. Zhang, H. Wang, Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization, Protein Cell 12 (2021) 810–817. https://doi.org/10.1007/s13238-021-00825-y.

H. Ryu, K. Nam, B.E. Lee, Y. Jeong, S. Lee, J. Kim, Y.-M. Hyun, J.-I. Kim, J.-H. Park, The sperm hook in house mice: a functional adaptation for migration and self-organised behaviour, (2024). https://doi.org/10.1101/2024.02.19.581047.

Y. Muro, H. Hasuwa, A. Isotani, H. Miyata, K. Yamagata, M. Ikawa, R. Yanagimachi, M. Okabe, Behavior of Mouse Spermatozoa in the Female Reproductive Tract from Soon after Mating to the Beginning of Fertilization1, Biology of Reproduction 94 (2016). https://doi.org/10.1095/biolreprod.115.135368.

C. Tung, C. Lin, B. Harvey, A.G. Fiore, F. Ardon, M. Wu, S.S. Suarez, Fluid viscoelasticity promotes collective swimming of sperm, Sci Rep 7 (2017) 3152. https://doi.org/10.1038/s41598-017-03341-4.

S. Wang, I.V. Larina, In vivo three-dimensional tracking of sperm behaviors in the mouse oviduct, Development (2018) dev.157685. https://doi.org/10.1242/dev.157685.

S. Xiao, J. Riordon, A. Lagunov, M. Ghaffarzadeh, T. Hannam, R. Nosrati, D. Sinton, Human sperm cooperate to transit highly viscous regions on the competitive pathway to fertilization, Commun Biol 6 (2023) 495. https://doi.org/10.1038/s42003-023-04875-2.

J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers—single particle motion and collective behavior: a review, Rep. Prog. Phys. 78 (2015) 056601. https://doi.org/10.1088/0034-4885/78/5/056601.

E. Lauga, T.R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72 (2009) 096601. https://doi.org/10.1088/0034-4885/72/9/096601.

S.E. Spagnolie, P.T. Underhill, Swimming in Complex Fluids, Annu. Rev. Condens. Matter Phys. 14 (2023) 381–415. https://doi.org/10.1146/annurev-conmatphys-040821-112149.

S.F. Schoeller, E.E. Keaveny, From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions, J. R. Soc. Interface. 15 (2018) 20170834. https://doi.org/10.1098/rsif.2017.0834.

Y. Yang, J. Elgeti, G. Gompper, Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through hydrodynamic interactions, Phys. Rev. E 78 (2008) 061903. https://doi.org/10.1103/PhysRevE.78.061903.

K. Ishimoto, H. Gadêlha, E.A. Gaffney, D.J. Smith, J. Kirkman-Brown, Human sperm swimming in a high viscosity mucus analogue, Journal of Theoretical Biology 446 (2018) 1–10. https://doi.org/10.1016/j.jtbi.2018.02.013.

K. Ishimoto, E.A. Gaffney, Hydrodynamic Clustering of Human Sperm in Viscoelastic Fluids, Sci Rep 8 (2018) 15600. https://doi.org/10.1038/s41598-018-33584-8.

N. Taketoshi, T. Omori, T. Ishikawa, Elasto-hydrodynamic interaction of two swimming spermatozoa, Physics of Fluids 32 (2020) 101901. https://doi.org/10.1063/5.0022107.

J. Riordon, F. Tarlan, J.B. You, B. Zhang, P.J. Graham, T. Kong, Y. Wang, A. Lagunov, T. Hannam, K. Jarvi, D. Sinton, Two-dimensional planar swimming selects for high DNA integrity sperm, Lab Chip 19 (2019) 2161–2167. https://doi.org/10.1039/C9LC00209J.

R. Alert, J. Casademunt, J.-F. Joanny, Active Turbulence, Annu. Rev. Condens. Matter Phys. 13 (2022) 143–170. https://doi.org/10.1146/annurev-conmatphys-082321-035957.

A. Doostmohammadi, J. Ignés-Mullol, J.M. Yeomans, F. Sagués, Active nematics, Nat Commun 9 (2018) 3246. https://doi.org/10.1038/s41467-018-05666-8.

V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments, Nature 467 (2010) 73–77. https://doi.org/10.1038/nature09312.

Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Large-scale vortex lattice emerging from collectively moving microtubules, Nature 483 (2012) 448–452. https://doi.org/10.1038/nature10874.

Y. Peng, Z. Liu, X. Cheng, Imaging the emergence of bacterial turbulence: Phase diagram and transition kinetics, Sci. Adv. 7 (2021) eabd1240. https://doi.org/10.1126/sciadv.abd1240.

H. Xu, Y. Wu, Self-enhanced mobility enables vortex pattern formation in living matter, Nature 627 (2024) 553–558. https://doi.org/10.1038/s41586-024-07114-8.

G. Duclos, C. Erlenkämper, J.-F. Joanny, P. Silberzan, Topological defects in confined populations of spindle-shaped cells, Nature Phys 13 (2017) 58–62. https://doi.org/10.1038/nphys3876.

K. Kawaguchi, R. Kageyama, M. Sano, Topological defects control collective dynamics in neural progenitor cell cultures, Nature 545 (2017) 327–331. https://doi.org/10.1038/nature22321.

T. Sugi, H. Ito, M. Nishimura, K.H. Nagai, C. elegans collectively forms dynamical networks, Nat Commun 10 (2019) 683. https://doi.org/10.1038/s41467-019-08537-y.

I.H. Riedel, K. Kruse, J. Howard, A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells, Science 309 (2005) 300–303. https://doi.org/10.1126/science.1110329.

A. Creppy, O. Praud, X. Druart, P.L. Kohnke, F. Plouraboué, Turbulence of swarming sperm, Phys. Rev. E 92 (2015) 032722. https://doi.org/10.1103/PhysRevE.92.032722.

T.T. Turner, S.S. Howards, Factors Involved in the Initiation of Sperm Motility, Biology of Reproduction 18 (1978) 571–578. https://doi.org/10.1095/biolreprod18.4.571.

T.T. Turner, G.W. Reich, Cauda Epididymidal Sperm Motility: A Comparison Among Five Species, Biology of Reproduction 32 (1985) 120–128. https://doi.org/10.1095/biolreprod32.1.120.

R. Yanagimachi, Mysteries and unsolved problems of mammalian fertilization and related topics, Biology of Reproduction 106 (2022) 644–675. https://doi.org/10.1093/biolre/ioac037.

K. Inaba, Molecular Architecture of the Sperm Flagella: Molecules for Motility and Signaling, Zoological Science 20 (2003) 1043–1056. https://doi.org/10.2108/zsj.20.1043.

J.T. Canty, R. Tan, E. Kusakci, J. Fernandes, A. Yildiz, Structure and Mechanics of Dynein Motors, Annu Rev Biophys 50 (2021) 549–574. https://doi.org/10.1146/annurev-biophys-111020-101511.

K.E. Summers, I.R. Gibbons, Adenosine Triphosphate-Induced Sliding of Tubules in Trypsin-Treated Flagella of Sea-Urchin Sperm, Proceedings of the National Academy of Sciences 68 (1971) 3092–3096. https://doi.org/10.1073/pnas.68.12.3092.

B.H. Gibbons, B. Baccetti, I.R. Gibbons, Live and reactivated motility in the 9+0 flagellum of Anguilla sperm, Cell Motil 5 (1985) 333–350. https://doi.org/10.1002/cm.970050406.

S. Ishijima, K. Sekiguchi, Y. Hiramoto, Comparative study of the beat patterns of american and asian horseshoe crab sperm: Evidence for a role of the central pair complex in forming planar waveforms in flagella, Cell Motility 9 (1988) 264–270. https://doi.org/10.1002/cm.970090308.

K. Inaba, Sperm flagella: comparative and phylogenetic perspectives of protein components, Molecular Human Reproduction 17 (2011) 524–538. https://doi.org/10.1093/molehr/gar034.

C.B. Lindemann, K.A. Lesich, The many modes of flagellar and ciliary beating: Insights from a physical analysis, Cytoskeleton 78 (2021) 36–51. https://doi.org/10.1002/cm.21656.

S. Gadadhar, G. Alvarez Viar, J.N. Hansen, A. Gong, A. Kostarev, C. Ialy-Radio, S. Leboucher, M. Whitfield, A. Ziyyat, A. Touré, L. Alvarez, G. Pigino, C. Janke, Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility, Science 371 (2021) eabd4914. https://doi.org/10.1126/science.abd4914.

M. Muschol, C. Wenders, G. Wennemuth, Four-dimensional analysis by high-speed holographic imaging reveals a chiral memory of sperm flagella, PLOS ONE 13 (2018) e0199678. https://doi.org/10.1371/journal.pone.0199678.

T.-W. Su, L. Xue, A. Ozcan, High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 16018–16022. https://doi.org/10.1073/pnas.1212506109.

Z. Chen, G.A. Greenan, M. Shiozaki, Y. Liu, W.M. Skinner, X. Zhao, S. Zhao, R. Yan, Z. Yu, P.V. Lishko, D.A. Agard, R.D. Vale, In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes, Nat Struct Mol Biol 30 (2023) 360–369. https://doi.org/10.1038/s41594-022-00861-0.

Z. Chen, M. Shiozaki, K.M. Haas, W.M. Skinner, S. Zhao, C. Guo, B.J. Polacco, Z. Yu, N.J. Krogan, P.V. Lishko, R.M. Kaake, R.D. Vale, D.A. Agard, De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking, Cell 186 (2023) 5041-5053.e19. https://doi.org/10.1016/j.cell.2023.09.017.

M.R. Leung, J. Zeng, X. Wang, M.C. Roelofs, W. Huang, R. Zenezini Chiozzi, J.F. Hevler, A.J.R. Heck, S.K. Dutcher, A. Brown, R. Zhang, T. Zeev-Ben-Mordehai, Structural specializations of the sperm tail, Cell 186 (2023) 2880-2896.e17. https://doi.org/10.1016/j.cell.2023.05.026.

L. Zhou, H. Liu, S. Liu, X. Yang, Y. Dong, Y. Pan, Z. Xiao, B. Zheng, Y. Sun, P. Huang, X. Zhang, J. Hu, R. Sun, S. Feng, Y. Zhu, M. Liu, M. Gui, J. Wu, Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility, Cell 186 (2023) 2897-2910.e19. https://doi.org/10.1016/j.cell.2023.05.009.

H. Miyata, J.M. Castaneda, Y. Fujihara, Z. Yu, D.R. Archambeault, A. Isotani, D. Kiyozumi, M.L. Kriseman, D. Mashiko, T. Matsumura, R.M. Matzuk, M. Mori, T. Noda, A. Oji, M. Okabe, R. Prunskaite-Hyyrylainen, R. Ramirez-Solis, Y. Satouh, Q. Zhang, M. Ikawa, M.M. Matzuk, Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 7704–7710. https://doi.org/10.1073/pnas.1608458113.

T. Noda, A. Taira, H. Shinohara, K. Araki, The testis-, epididymis-, or seminal vesicle-enriched genes Aldoart2, Serpina16, Aoc1l3, and Pate14 are not essential for male fertility in mice, Exp Anim 72 (2023) 314–323. https://doi.org/10.1538/expanim.22-0158.

T. Noda, N. Sakurai, K. Nozawa, S. Kobayashi, D.J. Devlin, M.M. Matzuk, M. Ikawa, Nine genes abundantly expressed in the epididymis are not essential for male fecundity in mice, Andrology 7 (2019) 644–653. https://doi.org/10.1111/andr.12621.

B.H. Gibbons, I.R. Gibbons, Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100, J Cell Biol 54 (1972) 75–97. https://doi.org/10.1083/jcb.54.1.75.

S.M. King, Axonemal Dynein Arms, Cold Spring Harb Perspect Biol 8 (2016) a028100. https://doi.org/10.1101/cshperspect.a028100.

K. Ishida, M. Okuno, S. Morisawa, T. Mohri, H. Mohri, M. Waku, M. Morisawa, Initiation of Sperm Motility Induced by Cyclic AMP in Hamster and Boar: (mammals/sperm/motility/initiation/cyclic AMP), Dev Growth Differ 29 (1987) 47–56. https://doi.org/10.1111/j.1440-169X.1987.00047.x.

M. Morisawa, M. Okuno, Cyclic AMP induces maturation of trout sperm axoneme to initiate motility, Nature 295 (1982) 703–704. https://doi.org/10.1038/295703a0.

M. Salathe, Regulation of Mammalian Ciliary Beating, Annu. Rev. Physiol. 69 (2007) 401–422. https://doi.org/10.1146/annurev.physiol.69.040705.141253.

H. Tateno, D. Krapf, T. Hino, C. Sánchez-Cárdenas, A. Darszon, R. Yanagimachi, P.E. Visconti, Ca 2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 18543–18548. https://doi.org/10.1073/pnas.1317113110.

M.M. Magiera, P. Singh, S. Gadadhar, C. Janke, Tubulin Posttranslational Modifications and Emerging Links to Human Disease, Cell 173 (2018) 1323–1327. https://doi.org/10.1016/j.cell.2018.05.018.

R. Pereira, R. Sá, A. Barros, M. Sousa, Major regulatory mechanisms involved in sperm motility, Asian J Androl 19 (2017) 5. https://doi.org/10.4103/1008-682X.167716.

R. Viswanadha, W.S. Sale, M.E. Porter, Ciliary Motility: Regulation of Axonemal Dynein Motors, Cold Spring Harb Perspect Biol 9 (2017) a018325. https://doi.org/10.1101/cshperspect.a018325.

R.K. Sunahara, C.W. Dessauer, A.G. Gilman, Complexity and diversity of mammalian adenylyl cyclases, Annu Rev Pharmacol Toxicol 36 (1996) 461–480. https://doi.org/10.1146/annurev.pa.36.040196.002333.

G. Esposito, B.S. Jaiswal, F. Xie, M.A.M. Krajnc-Franken, T.J.A.A. Robben, A.M. Strik, C. Kuil, R.L.A. Philipsen, M. Van Duin, M. Conti, J.A. Gossen, Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 2993–2998. https://doi.org/10.1073/pnas.0400050101.

K.C. Hess, B.H. Jones, B. Marquez, Y. Chen, T.S. Ord, M. Kamenetsky, C. Miyamoto, J.H. Zippin, G.S. Kopf, S.S. Suarez, L.R. Levin, C.J. Williams, J. Buck, S.B. Moss, The “Soluble” Adenylyl Cyclase in Sperm Mediates Multiple Signaling Events Required for Fertilization, Developmental Cell 9 (2005) 249–259. https://doi.org/10.1016/j.devcel.2005.06.007.

M. Balbach, T. Rossetti, J. Ferreira, L. Ghanem, C. Ritagliati, R.W. Myers, D.J. Huggins, C. Steegborn, I.C. Miranda, P.T. Meinke, J. Buck, L.R. Levin, On-demand male contraception via acute inhibition of soluble adenylyl cyclase, Nat Commun 14 (2023) 637. https://doi.org/10.1038/s41467-023-36119-6.

M. Balbach, V. Beckert, J.N. Hansen, D. Wachten, Shedding light on the role of cAMP in mammalian sperm physiology, Molecular and Cellular Endocrinology 468 (2018) 111–120. https://doi.org/10.1016/j.mce.2017.11.008.

K. Taskén, E.M. Aandahl, Localized Effects of cAMP Mediated by Distinct Routes of Protein Kinase A, Physiological Reviews 84 (2004) 137–167. https://doi.org/10.1152/physrev.00021.2003.

M.A. Nolan, D.F. Babcock, G. Wennemuth, W. Brown, K.A. Burton, G.S. McKnight, Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility, Proc Natl Acad Sci U S A 101 (2004) 13483–13488. https://doi.org/10.1073/pnas.0405580101.

S. Vijayaraghavan, S.A. Goueli, M.P. Davey, D.W. Carr, Protein Kinase A-anchoring Inhibitor Peptides Arrest Mammalian Sperm Motility, Journal of Biological Chemistry 272 (1997) 4747–4752. https://doi.org/10.1074/jbc.272.8.4747.

W. Lim, B. Mayer, T. Pawson, Cell signaling: principles and mechanisms, Garland Science, Taylor & Francis Group, New York, 2015.

A. Itoh, K. Inaba, H. Ohtake, M. Fujinoki, M. Morisawa, Characterization of a cAMP-dependent protein kinase catalytic subunit from rainbow trout spermatozoa, Biochem Biophys Res Commun 305 (2003) 855–861. https://doi.org/10.1016/s0006-291x(03)00840-4.

M.J. Freitas, S. Vijayaraghavan, M. Fardilha, Signaling mechanisms in mammalian sperm motility†, Biology of Reproduction 96 (2017) 2–12. https://doi.org/10.1095/biolreprod.116.144337.

A. Amaral, Energy metabolism in mammalian sperm motility, WIREs Mechanisms of Disease 14 (2022) e1569. https://doi.org/10.1002/wsbm.1569.

P.E. Visconti, Sperm Bioenergetics in a Nutshell1, Biology of Reproduction 87 (2012). https://doi.org/10.1095/biolreprod.112.104109.

W.C.L. Ford, Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?, Human Reproduction Update 12 (2006) 269–274. https://doi.org/10.1093/humupd/dmi053.

C. Mukai, M. Okuno, Glycolysis Plays a Major Role for Adenosine Triphosphate Supplementation in Mouse Sperm Flagellar Movement, Biology of Reproduction 71 (2004) 540–547. https://doi.org/10.1095/biolreprod.103.026054.

G.L. Takei, D. Miyashiro, C. Mukai, M. Okuno, Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm, Journal of Experimental Biology (2014) jeb.090985. https://doi.org/10.1242/jeb.090985.

S.G. Goodson, Y. Qiu, K.A. Sutton, G. Xie, W. Jia, D.A. O’Brien, Metabolic Substrates Exhibit Differential Effects on Functional Parameters of Mouse Sperm Capacitation1, Biology of Reproduction 87 (2012). https://doi.org/10.1095/biolreprod.112.102673.

B.T. Storey, Mammalian sperm metabolism: oxygen and sugar, friend and foe, Int. J. Dev. Biol. 52 (2008) 427–437. https://doi.org/10.1387/ijdb.072522bs.

S. Falvo, D. Latino, A. Santillo, G. Chieffi Baccari, R. Senese, F. Nuzzolillo, M.M. Di Fiore, Effects of a high‐fat diet on rat epididymis, J Exp Zool Pt A 339 (2023) 535–544. https://doi.org/10.1002/jez.2698.

Y. Li, W. Zhao, R. Fu, Z. Ma, Y. Hu, Y. Liu, Z. Ding, Endoplasmic reticulum stress increases exosome biogenesis and packaging relevant to sperm maturation in response to oxidative stress in obese mice, Reprod Biol Endocrinol 20 (2022) 161. https://doi.org/10.1186/s12958-022-01031-z.

A. Tomar, M. Gomez-Velazquez, R. Gerlini, G. Comas-Armangué, L. Makharadze, T. Kolbe, A. Boersma, M. Dahlhoff, J.P. Burgstaller, M. Lassi, J. Darr, J. Toppari, H. Virtanen, A. Kühnapfel, M. Scholz, K. Landgraf, W. Kiess, M. Vogel, V. Gailus-Durner, H. Fuchs, S. Marschall, M. Hrabě De Angelis, N. Kotaja, A. Körner, R. Teperino, Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs, Nature 630 (2024) 720–727. https://doi.org/10.1038/s41586-024-07472-3.

E.R. James, D.T. Carrell, K.I. Aston, T.G. Jenkins, M. Yeste, A. Salas-Huetos, The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction, IJMS 21 (2020) 5377. https://doi.org/10.3390/ijms21155377.

V. Rinaldi, K. Messemer, K. Desevin, F. Sun, B.C. Berry, S. Kukreja, A.R. Tapper, A.J. Wagers, O.J. Rando, Evidence for RNA or protein transport from somatic tissues to the male reproductive tract in mouse, eLife 12 (2023) e77733. https://doi.org/10.7554/eLife.77733.

J. Lin, D. Nicastro, Asymmetric distribution and spatial switching of dynein activity generates ciliary motility, Science 360 (2018) eaar1968. https://doi.org/10.1126/science.aar1968.

C.J. Brokaw, Thinking about flagellar oscillation, Cell Motil. Cytoskeleton 66 (2009) 425–436. https://doi.org/10.1002/cm.20313.

S.M. King, W.S. Sale, Fifty years of microtubule sliding in cilia, Mol Biol Cell 29 (2018) 698–701. https://doi.org/10.1091/mbc.E17-07-0483.

Y. Morita, C. Shingyoji, Effects of imposed bending on microtubule sliding in sperm flagella, Curr Biol 14 (2004) 2113–2118. https://doi.org/10.1016/j.cub.2004.11.028.

C. Shingyoji, A. Murakami, K. Takahashi, Local reactivation of Triton-extracted flagella by iontophoretic application of ATP, Nature 265 (1977) 269–270. https://doi.org/10.1038/265269a0.

Y. Izawa, C. Shingyoji, Mechanical induction of oscillatory movement in demembranated, immotile flagella of sea urchin sperm at very low ATP, Journal of Experimental Biology (2020) jeb.225797. https://doi.org/10.1242/jeb.225797.

A. Vafaie, M.R. Raveshi, C. Devendran, R. Nosrati, A. Neild, Making immotile sperm motile using high-frequency ultrasound, Sci. Adv. 10 (2024) eadk2864. https://doi.org/10.1126/sciadv.adk2864.

P.G. Gillespie, R.G. Walker, Molecular basis of mechanosensory transduction, Nature 413 (2001) 194–202. https://doi.org/10.1038/35093011.

V. Swaminathan, M. Gloerich, Decoding mechanical cues by molecular mechanotransduction, Current Opinion in Cell Biology 72 (2021) 72–80. https://doi.org/10.1016/j.ceb.2021.05.006.

T. Hirashima, N. Hino, K. Aoki, M. Matsuda, Stretching the Limits of ERK Signaling – Cell Mechanosensing to ERK Activation, Current Opinion in Cell Biology (2023). https://doi.org/in review.

N. Hino, L. Rossetti, A. Marín-Llauradó, K. Aoki, X. Trepat, M. Matsuda, T. Hirashima, ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization, Developmental Cell 53 (2020) 646-660.e8. https://doi.org/10.1016/j.devcel.2020.05.011.

N. Kinoshita, Y. Hashimoto, N. Yasue, M. Suzuki, I.M. Cristea, N. Ueno, Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis, Cell Reports 30 (2020) 3875-3888.e3. https://doi.org/10.1016/j.celrep.2020.02.074.

A.N. Nayak, T. Hirashima, Tug-of-war via ERK signaling pathway for tissue organization – ERK activation to force generation, Current Opinion in Cell Biology 85 (2023) 102249. https://doi.org/10.1016/j.ceb.2023.102249.

T. Hirashima, M. Matsuda, ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue, Current Biology 34 (2024) 683-696.e6. https://doi.org/10.1016/j.cub.2023.12.049.

M. Ishii, T. Tateya, M. Matsuda, T. Hirashima, Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis, eLife 10 (2021) e61092. https://doi.org/10.7554/eLife.61092.

D. Boocock, T. Hirashima, E. Hannezo, Interplay between Mechanochemical Patterning and Glassy Dynamics in Cellular Monolayers, PRX Life 1 (2023) 013001. https://doi.org/10.1103/PRXLife.1.013001.

D. Boocock, N. Hino, N. Ruzickova, T. Hirashima, E. Hannezo, Theory of mechanochemical patterning and optimal migration in cell monolayers, Nat. Phys. 17 (2021) 267–274. https://doi.org/10.1038/s41567-020-01037-7.

T. Hirashima, Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development, Biochemical Journal 479 (2022) 129–143. https://doi.org/10.1042/BCJ20210557.

Downloads

Posted


Submitted: 2024-09-27 07:25:37 UTC

Published: 2024-10-01 09:14:33 UTC — Updated on 2024-11-05 00:55:56 UTC

Versions

Reason(s) for revision

Due to an update error in the reference management software Zotero, some reference citations contained mistakes in the previous version.
Section
Biology, Life Sciences & Basic Medicine