Evaluating a novel reproduction number estimation method: A comparative analysis
DOI:
https://doi.org/10.51094/jxiv.551Keywords:
Reproduction number, generation time, gamma distribution, Euler-Lotka equation, SARS-CoV-2Abstract
This paper presents practical methodologies and demonstrations for determining reproduction number, offering valuable insights to researchers and public health officials. Multiple approaches for simplified estimation techniques are proposed for the reproduction number of infectious diseases, and their effectiveness is compared. Methods assuming either exponential or delta distributions for the generation time of infectious diseases offer convenience by enabling the calculation of the reproduction number based solely on the mean of the generation time and number of new infection cases. However, the former tends to underestimate the reproduction number when the variance of the generation time distribution is small, while the latter tends to overestimate it when the variance is large. Conversely, the method assuming a normal distribution may underestimate the reproduction number depending on the growth rate. However, the estimation method assuming a gamma distribution provides reliable values in all scenarios. These estimation formulas should be applied judiciously, considering the characteristics of the generation time distribution of infectious diseases.
Conflicts of Interest Disclosure
The author has no conflict of interests to declare.Downloads *Displays the aggregated results up to the previous day.
References
TH NOVEL CORONAVIRUS INFECTION CONTROL ADVISORY BOARD, M. O. H., LABOUR AND WELFARE (2022) Document 3-8-②, Comparison of 3rd, 5th, 6th, and 7th waves (summary). Shingata coronavirus kansensho taisaku advisory board. vol. 2023. Tokyo, Japan, Ministry of Health, Labour and Welfare.
ALI, S. T., WANG, L., LAU, E. H., XU, X.-K., DU, Z., WU, Y., LEUNG, G. M. & COWLING, B. J. (2020) Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science, 369(6507), 1106-1109.
ALIMOHAMADI, Y., TAGHDIR, M. & SEPANDI, M. (2020) Estimate of the basic reproduction number for COVID-19: a systematic review and meta-analysis. J. Prev. Med. Public. Health, 53(3), 151.
AN DER HEIDEN, M. & HAMOUDA, O. (2020) Schätzung der aktuellen Entwicklung der SARS-CoV-2- Epidemie in Deutschland – Nowcasting. Epidemiologisches Bulletin, 2020(17), 10-15. https://doi.org/http://dx.doi.org/10.25646/6692.2 (in German).
ANDERSON, R. M. & MAY, R. M. (1991) Infectious diseases of humans: dynamics and control. Oxford university press, pp. 757.
ANNUNZIATO, A. & ASIKAINEN, T. (2020) Effective reproduction number estimation from data series, vol. JRC121343. Ispra (VA), Italy: Joint Research Centre, European Commission.
ARVANITIS, A., FURXHI, I., TASIOULIS, T. & KARATZAS, K. (2021) Prediction of the effective reproduction number of COVID-19 in Greece. A machine learning approach using Google mobility data. J. Decis. Anal. Intell. Comput., 1(1), 1-21.
BACA R, N. & GUERNAOUI, S. (2006) The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol., 53(3), 421-436.
BHATIA, S., WARDLE, J., NASH, R. K., NOUVELLET, P. & CORI, A. (2023) Extending EpiEstim to estimate the transmission advantage of pathogen variants in real-time: SARS-CoV-2 as a case-study. Epidemics, 44, 100692.
BONIFAZI, G., LISTA, L., MENASCE, D., MEZZETTO, M., PEDRINI, D., SPIGHI, R. & ZOCCOLI, A. (2021) A simplified estimate of the effective reproduction number Rt using its relation with the doubling time and application to Italian COVID-19 data. Eur. Phys. J. Plus, 136(4), 1-14.
BSAT, R., CHEMAITELLY, H., COYLE, P., TANG, P., HASAN, M. R., AL KANAANI, Z., AL KUWARI, E., BUTT, A. A., JEREMIJENKO, A. & KALEECKAL, A. H. (2022) Characterizing the effective reproduction number during the COVID-19 pandemic: Insights from Qatar’s experience. J. Glob. Health, 12.
CHEN, D., LAU, Y.-C., XU, X.-K., WANG, L., DU, Z., TSANG, T. K., WU, P., LAU, E. H., WALLINGA, J. & COWLING, B. J. (2022) Inferring time-varying generation time, serial interval, and incubation period distributions for COVID-19. Nat. Commun., 13(1), 7727.
CLEMENT, J. C., PONNUSAMY, V., SRIHARIPRIYA, K. & NANDAKUMAR, R. (2021) A survey on mathematical, machine learning and deep learning models for COVID-19 transmission and diagnosis. IEEE Rev. Biomed. Eng., 15, 325-340.
CORI, A., FERGUSON, N. M., FRASER, C. & CAUCHEMEZ, S. (2013) A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. Am. J. Epidemiol., 178(9), 1505-1512. https://doi.org/10.1093/aje/kwt133.
D'ARIENZO, M. & CONIGLIO, A. (2020) Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf. Health., 2(2), 57-59.
DIEKMANN, O., HEESTERBEEK, J. A. P. & METZ, J. A. (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28(4), 365-382.
EALES, O., AINSLIE, K. E., WALTERS, C. E., WANG, H., ATCHISON, C., ASHBY, D., DONNELLY, C. A., COOKE, G., BARCLAY, W. & WARD, H. (2022) Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number. Epidemics, 40, 100604.
FELLER, W. (1941) On the integral equation of renewal theory. Ann. Math. Statist., 12(3), 243-267.
GOSTIC, K. M., MCGOUGH, L., BASKERVILLE, E. B., ABBOTT, S., JOSHI, K., TEDIJANTO, C., KAHN, R., NIEHUS, R., HAY, J. A. & DE SALAZAR, P. M. (2020) Practical considerations for measuring the effective reproductive number, R t. PLoS Comput. Biol., 16(12), e1008409.
HART, W. S., ABBOTT, S., ENDO, A., HELLEWELL, J., MILLER, E., ANDREWS, N., MAINI, P. K., FUNK, S. & THOMPSON, R. N. (2022) Inference of the SARS-CoV-2 generation time using UK household data. eLife, 11, e70767. https://doi.org/10.7554/eLife.70767.
HEFFERNAN, J. M., SMITH, R. J. & WAHL, L. M. (2005) Perspectives on the basic reproductive ratio. J. R. Soc. Interface., 2(4), 281-293.
INABA, H. (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol., 65, 309-348.
IYANIWURA, S. A., RABIU, M., DAVID, J. F. & KONG, J. D. (2022) The basic reproduction number of COVID-19 across Africa. PLoS One, 17(2), e0264455. https://doi.org/10.1371/journal.pone.0264455.
JUSOT, J.-F. (2022) An update of serial interval estimates for COVID-19: a meta-analysis. 4open, 5, 16.
KERMACK, W. O. & MCKENDRICK, A. G. (1927) Contributions to the mathematical theory of epidemics I. Proceedings of the Royal Society, 115A, 700-721.
KERMACK, W. O. & MCKENDRICK, A. G. (1932) Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138(834), 55-83.
KHAILAIE, S., MITRA, T., BANDYOPADHYAY, A., SCHIPS, M., MASCHERONI, P., VANELLA, P., LANGE, B., BINDER, S. C. & MEYER-HERMANN, M. (2021) Development of the reproduction number from coronavirus SARS-CoV-2 case data in Germany and implications for political measures. BMC Med., 19(1), 1-16.
KNIGHT, J. & MISHRA, S. (2020) Estimating effective reproduction number using generation time versus serial interval, with application to COVID-19 in the Greater Toronto Area, Canada. Infect. Dis. Model., 5, 889-896.
KO, Y., ARIMA, Y., SUZUKI, M., SHIMADA, C., FURUSE, Y. & NAKAJIMA, K. (2021) COVID-19感染報告者数に基づく簡易実効再生産数推定方法 [COVID-19 Simplified method for estimating the effective reproductions number based on the number of reported cases of infection]. Infect. Agents Surveill. Rep. (IASR), 42(6), 128-129. (in Japanese).
KOCH-INSTITUT, R. (2020) Erläuterung der Schätzung der zeitlich variierenden. Reproduktionszahl R. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/R-Wert-Erlaeuterung.pdf?__blob=publicationFile (Accessed 2023/8/21)(in German).
LEHTINEN, S., ASHCROFT, P. & BONHOEFFER, S. (2021) On the relationship between serial interval, infectiousness profile and generation time. J. R. Soc. Interface., 18(174), 20200756.
LIPPIELLO, E., PETRILLO, G. & DE ARCANGELIS, L. (2022) Estimating the generation interval from the incidence rate, the optimal quarantine duration and the efficiency of fast switching periodic protocols for COVID-19. Sci. Rep., 12(1), 4623.
LIPSITCH, M., COHEN, T., COOPER, B., ROBINS, J. M., MA, S., JAMES, L., GOPALAKRISHNA, G., CHEW, S. K., TAN, C. C. & SAMORE, M. H. (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science, 300(5627), 1966-1970.
LOTKA, A. J. (1913) A natural population norm. I. Journal of the Washington Academy of Sciences, 3(9), 241-248.
MINISTRY OF HEALTH. LABOUR AND WELFARE (2023) Visualizing the data: information on COVID-19 infections. vol. 2023.
NASH, R. K., NOUVELLET, P. & CORI, A. (2022) Real-time estimation of the epidemic reproduction number: Scoping review of the applications and challenges. PLOS Digital Health, 1(6), e0000052.
NISHIURA, H., LINTON, N. M. & AKHMETZHANOV, A. R. (2020) Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis., 93, 284-286.
RICCABONI, M. & VERGINER, L. (2022) The impact of the COVID-19 pandemic on scientific research in the life sciences. PLoS One, 17(2), e0263001.
ROBERTS, M. & HEESTERBEEK, J. (2003) A new method for estimating the effort required to control an infectious disease. Proc. R. Soc. Lond. B. Biol. Sci., 270(1522), 1359-1364.
SHARPE, F. R. & LOTKA, A. J. (1911) L. A problem in age-distribution. Lond. Edinb. Dublin Philos. Mag. J. Sci., 21(124), 435-438.
STAWICKI, S. P., JEANMONOD, R., MILLER, A. C., PALADINO, L., GAIESKI, D. F., YAFFEE, A. Q., DE WULF, A., GROVER, J., PAPADIMOS, T. J. & BLOEM, C. (2020) The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A joint american college of academic international medicine-world academic council of emergency medicine multidisciplinary COVID-19 working group consensus paper. J. Glob. Infect. Dis., 12(2), 47.
THOMPSON, R. N., STOCKWIN, J. E., VAN GAALEN, R. D., POLONSKY, J. A., KAMVAR, Z. N., DEMARSH, P. A., DAHLQWIST, E., LI, S., MIGUEL, E., JOMBART, T., LESSLER, J., CAUCHEMEZ, S. & CORI, A. (2019) Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics, 29, 100356. https://doi.org/https://doi.org/10.1016/j.epidem.2019.100356.
TOYO_KEIZAI_ONLINE (2023) Coronavirus Disease (COVID-19) Situation Report in Japan. vol. 2023.
WALLINGA, J. & LIPSITCH, M. (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences, 274(1609), 599-604.
WALLINGA, J. & TEUNIS, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol., 160(6), 509-516.
YAMAUCHI, S. (2020) 発症間隔分布に基づいた増幅率・再生産数間の関係について(改訂) [Relationship between Amplification Rate and Reproduction Number Based on Serial Interval Distribution (Revised)]. http://sho-yama.c.ooco.jp/covid19/program/r2r.pdf (Accessed 2023/8/21)(in Japanese).
Downloads
Posted
Submitted: 2023-11-16 06:18:22 UTC
Published: 2023-11-20 00:34:44 UTC
License
Copyright (c) 2023
Katsruo ANAZAWA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.