This is an outdated version published on 2022-12-27 02:46:22 UTC. Read the most recent version.
This preprint has been published.
DOI: https://doi.org/10.1109/ACCESS.2023.3256720
Preprint / Version 4

COM Shifter and Body Rotator for Step-by-Step Teleoperation of Bipedal Robots

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.45

Keywords:

Teleoperation, Bipedal robots, Cart-flywheel-table model

Abstract

This paper presents a controller for step-by-step teleoperation of bipedal robots, in which the user commands the robot's foot motions in a step-by-step manner through a pair of hand-held 3-degree-of-freedom haptic devices. This teleoperation scheme allows users to precisely manipulate the swing foot motions to traverse rough terrains by avoiding obstacles. The scheme requires a controller that quickly responds to the user commands and maintains the balance even under erroneous user commands. The main components of the proposed controller are a COM (center of mass) shifter and a body rotator, which are built upon a cart-flywheel-table model of bipedal robots. The COM shifter is a simple feedback controller to produce a COM motion according to a reference ZMP (zero moment point). The body rotator is a complement for the COM shifter to produce an appropriate angular momentum rate to enhance the regulation of ZMP. The proposed controller is validated in our interactive/realtime simulation environment.

Conflicts of Interest Disclosure

The authors declare no potential conflict of interests.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

S. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, and F. Kanehiro, “Development of an indirect-type teleoperation interface for biped humanoid robots,” in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), 2014, pp. 590–596.

S. Kohlbrecher, A. Romay, A. Stumpf, A. Gupta, O. von Stryk, F. Bacim, D. A. Bowman, A. Goins, R. Balasubramanian, and D. C. Conner, “Human-robot teaming for rescue missions: Team ViGIR’s approach to the 2013 DARPA robotics challenge trials,” J. Field Robot., vol. 32, no. 3, pp. 352–377, 2015.

R. Cisneros, S. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, T. Sakaguchi, and F. Kanehiro, “Effective teleoperated manipulation for humanoid robots in partially unknown real environments: team AISTNEDO’s approach for performing the plug task during the DRC finals,” Adv. Robot., vol. 30, no. 24, pp. 1544–1558, 2016.

N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie, “Whole body teleoperation of a humanoid robot development of a simple master device using joysticks,” J. Robot. Soc. Jpn., vol. 22, no. 4, pp. 519–527, 2004.

J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami, “An intelligent joystick for biped control,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2006, pp. 860–865.

L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and S. Ivaldi, “A multimode teleoperation framework for humanoid loco-manipulation: An application for the iCub robot,” IEEE Robot. & Autom. Mag., vol. 26, no. 4, pp. 73–82, 2019.

I. Almetwally and M. Mallem, “Real-time tele-operation and telewalking of humanoid robot Nao using Kinect depth camera,” in Proc. Int. Conf. Netw. Sens. Control (ICNSC), 2013, pp. 463–466.

D. K. Prasanga, K. Tanida, K. Ohnishi, and T. Murakami, “Simultaneous bipedal locomotion based on haptics for teleoperation,” Adv. Robot., vol. 33, no. 15-16, pp. 824–839, 2019.

Y. Ishiguro, T. Makabe, Y. Nagamatsu, Y. Kojio, K. Kojima, F. Sugai, Y. Kakiuchi, K. Okada, and M. Inaba, “Bilateral humanoid teleoperation system using whole-body exoskeleton cockpit TABLIS,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6419–6426, 2020.

S. Wang and J. Ramos, “Dynamic locomotion teleoperation of a reduced model of a wheeled humanoid robot using a whole-body human-machine interface,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1872–1879, 2021.

J. Ramos and S. Kim, “Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation,” Science Robotics, vol. 4, no. 35, p. eaav4282, 2019.

Y. Ishiguro, K. Kojima, F. Sugai, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, “High speed whole body dynamic motion experiment with real time master-slave humanoid robot system,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 5835–5841.

A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl, “Online walking motion generation with automatic footstep placement,” Adv. Robot., vol. 24, no. 5-6, pp. 719–737, 2010.

T. Sugihara and Y. Nakamura, “Boundary condition relaxation method for stepwise pedipulation planning of biped robots,” IEEE Trans. Robot., vol. 25, no. 3, pp. 658–669, 2009.

T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation and control for biped robot –1st report: Walking gait pattern generation–,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2009, pp. 1084–1091.

K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “An analytical method for real-time gait planning for humanoid robots,” Int. J. Humanoid Robot., vol. 3, no. 1, pp. 1–19, 2006.

R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A closed-form solution for real-time ZMP gait generation and feedback stabilization,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2015, pp. 936–940.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2014, pp. 279–286.

T. Ando, T. Watari, and R. Kikuuwe, “Master-slave bipedal walking and semi-automatic standing up of humanoid robots,” in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), 2020, pp. 360–365.

——, “Reference ZMP generation for teleoperated bipedal robots walk- ing on non-flat terrains,” in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), 2021, pp. 794–780.

S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Hu- manoid Robotics, ser. Springer Tracts in Advanced Robotics. Springer, 2014, vol. 101.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2003, pp. 1620–1627.

Y. Kojio, Y. Ishiguro, K.-N.-K. Nguyen, F. Sugai, Y. Kakiuchi, K. Okada, and M. Inaba, “Unified balance control for biped robots including modification of footsteps with angular momentum and falling detection based on capturability,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2019, pp. 497–504.

R. Schuller, G. Mesesan, J. Englsberger, J. Lee, and C. Ott, “Online cen- troidal angular momentum reference generation and motion optimization for humanoid push recovery,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5689–5697, 2021.

J. Ding, C. Zhou, S. Xin, X. Xiao, and N. G. Tsagarakis, “Nonlinear model predictive control for robust bipedal locomotion: exploring angu- lar momentum and CoM height changes,” Adv. Robot., vol. 35, no. 18, pp. 1079–1097, 2021.

K. Yamamoto, T. Kamioka, and T. Sugihara, “Survey on model-based biped motion control for humanoid robots,” Adv. Robot., vol. 34, no. 21-22, pp. 1353–1369, 2020.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid push recovery,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2006, pp. 200–207.

T. Sugihara, “Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2009, pp. 1966–1971.

P.-B. Wieber, “Trajectory free linear model predictive control for stable walking in the presence of strong perturbations,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2006, pp. 137–142.

S. Hong, Y. Oh, D. Kim, and B.-J. You, “Real-time walking pattern generation method for humanoid robots by combining feedback and feedforward controller,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 355–364, 2014.

K. Guan, K. Yamamoto, and Y. Nakamura, “Virtual-mass-ellipsoid inverted pendulum model and its applications to 3D bipedal locomotion on uneven terrains,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2019, pp. 1401–1406.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Resolved momentum control: Humanoid motion planning based on the linear and angular momentum,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2003, pp. 1644–1650.

Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res., vol. 6, no. 2, pp. 3–15, 1987.

Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,” Trans. ASME: J. Dyn. Sys., Meas., Control., vol. 108, pp. 163–171, 1986.

T. F. Chan and R. V. Dubey, “A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators,” IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 286–292, 1995.

C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini, “Motion planning for quadrupedal locomotion: Coupled planning, terrain mapping, and whole-body control,” IEEE Trans. Robot., vol. 36, no. 6, pp. 1635–1648, 2020.

J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, “Online decision of foot placement using singular lq preview regulation,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2011, pp. 13–18.

S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and K. Yokoi, “Biped walking stabilization based on linear inverted pendulum tracking,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2010, pp. 4489–4496.

S.-H. Lee and A. Goswami, “Reaction mass pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots,” in Proceedings 2007 IEEE international conference on robotics and automation, 2007, pp. 4667–4672.

S.-H. Lee and A. Goswami, “A momentum-based balance controller for humanoid robots on non-level and non-stationary ground,” Auton. Robots, vol. 33, no. 4, pp. 399–414, 2012.

R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Admittance and impedance representations of friction based on implicit euler integration,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1176–1188, 2006.

R. Kikuuwe and H. Fujimoto, “Incorporating geometric algorithms in impedance-and admittance-type haptic rendering,” in Proc. 2nd Joint EuroHap. Conf. Symp. Haptic Interfaces Virtual Environ., Teleoperator Syst., 2007, pp. 249–254.

S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, “Biped walking pattern generator allowing auxiliary ZMP control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2006, pp. 2993–2999.

D. N. Nenchev and R. Iizuka, “Emergent humanoid robot motion synergies derived from the momentum equilibrium principle and the distribution of momentum,” IEEE Trans. Robot., vol. 38, no. 1, pp. 536– 555, 2022.

M. Morisawa, F. Kanehiro, K. Kaneko, N. Mansard, J. Sola, E. Yoshida, K. Yokoi, and J.-P. Laumond, “Combining suppression of the disturbance and reactive stepping for recovering balance,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2010, pp. 3150–3156.

T. Sugihara, “Reflexive step-out control superposed on standing stabilization of biped robots,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2012, pp. 741–746.

S. Nakaoka, “Choreonoid: Extensible virtual robot environment built on an integrated GUI framework,” in PProc. IEEE/SICE Int. Symp. Syst. Integr. (SII), 2012, pp. 79–85.

Downloads

Posted


Submitted: 2022-04-07 07:41:53 UTC

Published: 2022-04-11 02:10:09 UTC — Updated on 2022-12-27 02:46:22 UTC

Versions

Reason(s) for revision

The manuscript has been revised in many places.
Section
Mechanical Engineering