COM Shifter and Body Rotator for Step-by-Step Teleoperation of Bipedal Robots
DOI:
https://doi.org/10.51094/jxiv.45キーワード:
Teleoperation、 Bipedal robots、 Cart-flywheel-table model抄録
This paper presents a controller for step-by-step teleoperation of bipedal robots, in which the user commands the robot's foot motions in a step-by-step manner through a pair of hand-held 3-degree-of-freedom haptic devices. This teleoperation scheme allows users to precisely manipulate the swing foot motions to traverse rough terrains by avoiding obstacles. The scheme requires a controller that quickly responds to the user commands and maintains the balance even under erroneous user commands. The main components of the proposed controller are a COM (center of mass) shifter and a body rotator, which are built upon a cart-flywheel-table model of bipedal robots. The COM shifter is a simple feedback controller to produce a COM motion according to a reference ZMP (zero moment point). The body rotator is a complement for the COM shifter to produce an appropriate angular momentum rate to enhance the regulation of ZMP. The proposed controller is validated in our interactive/realtime simulation environment. environment.
ダウンロード *前日までの集計結果を表示します
引用文献
S. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, and F. Kanehiro, “Development of an indirect- type teleoperation interface for biped humanoid robots,” In: Proceedings of the 2014 IEEE/SICE International Symposium on System Integration (2014) pp. 590–596.
S. Kohlbrecher, A. Romay, A. Stumpf, A. Gupta, O. von Stryk, F. Bacim, D. A. Bowman, A. Goins, R. Balasubramanian, and D. C. Conner, “Human-robot teaming for rescue missions: Team ViGIR’s approach to the 2013 DARPA robotics challenge trials,” Journal of Field Robotics 32(3), 352–377 (2015).
R. Cisneros, S. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, T. Sakaguchi, and F. Kanehiro, “Effective teleoperated manipulation for humanoid robots in partially unknown real environments: team AIST-NEDO’s approach for performing the plug task during the DRC finals,” Advanced Robotics 30(24), 1544–1558 (2016).
N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro and K. Tanie, “Whole body teleoperation of a humanoid robot - development of a simple master device using joysticks,” In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (2002) pp. 2569-2574.
J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami, “An intelligent joystick for biped control,” In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation (2006) pp. 860–865.
L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and S. Ivaldi, “A multimode teleoperation framework for humanoid loco-manipulation: An application for the iCub robot,” IEEE Robotics & Automation Magazine 26(4), 73–82 (2019).
I. Almetwally and M. Mallem, “Real-time tele-operation and tele-walking of humanoid robot Nao using Kinect depth camera,” In: Proceedings of International Conference on Networking, Sensing and Control (2013) pp. 463–466.
Y. Ishiguro, K. Kojima, F. Sugai, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, “High speed whole body dynamic motion experiment with real time master-slave humanoid robot system,” In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (2018) pp. 5835–5841.
D. K. Prasanga, K. Tanida, K. Ohnishi, and T. Murakami, “Simultaneous bipedal locomotion based on haptics for teleoperation,” Advanced Robotics 33(15-16), 824–839 (2019).
Y. Ishiguro, T. Makabe, Y. Nagamatsu, Y. Kojio, K. Kojima, F. Sugai, Y. Kakiuchi, K. Okada, and M. Inaba, “Bilateral humanoid teleoperation system using whole-body exoskeleton cockpit TABLIS,” IEEE Robotics and Automation Letter 5(4), 6419–6426 (2020).
S. Wang and J. Ramos, “Dynamic locomotion teleoperation of a reduced model of a wheeled humanoid robot using a whole-body human-machine interface,” IEEE Robotics and Automation Letter 7(2), 1872–1879 (2021).
J. Ramos and S. Kim, “Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation,” Science Robotics 4(35), eaav4282 (2019).
T. Ando, T. Watari, and R. Kikuuwe, “Master-slave bipedal walking and semi-automatic standing up of humanoid robots,” In: Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (2020) pp. 360–365.
T. Ando, T. Watari, and R. Kikuuwe, “Reference ZMP generation for teleoperated bipedal robots walking on non-flat terrains,” In: Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (2021) pp. 794–780.
A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl, “Online walk- ing motion generation with automatic footstep placement,” Advanced Robotics 24(5-6), 719–737 (2010).
T. Sugihara and Y. Nakamura, “Boundary condition relaxation method for stepwise pedipulation planning of biped robots,” IEEE Transactions on Robotic 25(3), 658–669 (2009).
T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation and control for biped robot –1st report: Walking gait pattern generation–,” In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 1084–1091.
K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “An analytical method for real-time gait planning for humanoid robots,” International Journal of Humanoid Robotic 3(1), 1–19 (2006).
R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A closed-form solution for real-time ZMP gait generation and feedback stabilization,” In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (2015) pp. 936–940.
S. Kajita, H. Hirukawa, K. Harada, and K.Yokoi, Introduction to Humanoid Robotics, vol. 101. Springer Tracts in Advanced Robotics (Springer Berlin Heidelberg, 2014).
S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (2003) pp. 1620–1627.
P.-B. Wieber, “Trajectory free linear model predictive control for stable walking in the presence of strong perturbations,” In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (2006) pp. 137–142.
J. Ding, C. Zhou, S. Xin, X. Xiao, and N. G. Tsagarakis, “Nonlinear model predictive control for robust bipedal locomotion: exploring angular momentum and CoM height changes,” Advanced Robotics 35(18), 1079–1097 (2021).
S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and K. Yokoi, “Biped walking stabilization based on linear inverted pendulum tracking,” In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (2010) pp. 4489–4496.
S. Hong, Y. Oh, D. Kim, and B.-J. You, “Real-time walking pattern generation method for humanoid robots by combining feedback and feedforward controller,” IEEE Transactions on Industrial Electronic 61(1), 355–364 (2014).
S.-H. Lee and A. Goswami, “Reaction mass pendulum (RMP): An explicit model for cen- troidal angular momentum of humanoid robots,” In: Proceedings of the 2007 IEEE International Conference on Robotics and Automatio (2007) pp. 4667–4672.
S.-H. Lee and A. Goswami, “A momentum-based balance controller for humanoid robots on nonlevel and non-stationary ground,” Autonomous Robot 33(4), 399–414 (2012).
K. Yamamoto, T. Kamioka, and T. Sugihara, “Survey on model-based biped motion control for humanoid robots,” Advanced Robotics 34(21-22), 1353–1369 (2020).
T. Sugihara, “Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator,” In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (2009) pp. 1966–1971.
K. Guan, K. Yamamoto, and Y. Nakamura, “Virtual-mass-ellipsoid inverted pendulum model and its applications to 3D bipedal locomotion on uneven terrains,” In: Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (2019) pp. 1401–1406.
Y. Kojio, Y. Ishiguro, K.-N.-K. Nguyen, F. Sugai, Y. Kakiuchi, K. Okada, and M. Inaba, “Uni- fied balance control for biped robots including modification of footsteps with angular momentum and falling detection based on capturability,” In: Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (2019) pp. 497–504.
J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid push recovery,” In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (2006) pp. 200–207.
S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Resolved momentum control: Humanoid motion planning based on the linear and angular momentum,” In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (2003) pp. 1644–1650.
Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” International Journal of Robotics Research 6(2), 3–15 (1987).
Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,” Transactions of ASME: Journal of Dynamic Systems, Measurement, and Control 108, 163–171 (1986).
T. F. Chan and R. V. Dubey, “A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators,” IEEE Transactions on Robotics and Automation 11(2), 286–292 (1995).
C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini, “Motion planning for quadrupedal locomotion: Coupled planning, terrain mapping, and whole-body control,” IEEE Transactions on Robotics 36(6), 1635–1648 (2020).
J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, “Online decision of foot placement using singular LQ preview regulation,” In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (2011) pp. 13–18.
R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Admittance and impedance representations of friction based on implicit Euler integration,” IEEE Transactions on Robotics 22(6), 1176–1188 (2006).
R. Kikuuwe and H. Fujimoto, “Incorporating geometric algorithms in impedance-and admit- tancetype haptic rendering,” In: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2007) pp. 249–254.
S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, “Biped walking pattern generator allowing auxiliary ZMP control,” In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006) pp. 2993–2999.
D. N. Nenchev and R. Iizuka, “Emergent humanoid robot motion synergies derived from the momentum equilibrium principle and the distribution of momentum,” IEEE Transactions on Robotic 38(1), 536–555 (2022).
R. Schuller, G. Mesesan, J. Englsberger, J. Lee, and C. Ott, “Online centroidal angular momentum reference generation and motion optimization for humanoid push recovery,” IEEE Robotics and Automation Letters 6(3), 5689–5697 (2021).
M. Morisawa, F. Kanehiro, K. Kaneko, N. Mansard, J. Sola, E. Yoshida, K. Yokoi, and J.-P. Lau- mond, “Combining suppression of the disturbance and reactive stepping for recovering balance,” In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (2010) pp. 3150–3156.
T. Sugihara, “Reflexive step-out control superposed on standing stabilization of biped robots,” In: Proceedings of 2012 12th IEEE-RAS International Conference on Humanoid Robots (2012) pp. 741–746.
S. Nakaoka, “Choreonoid: Extensible virtual robot environment built on an integrated GUI frame- work,” In: Proceedings of 2012 IEEE/SICE International Symposium on System Integration (2012) pp. 79–85.
ダウンロード
公開済
投稿日時: 2022-04-07 07:41:53 UTC
公開日時: 2022-04-11 02:10:09 UTC — 2022-10-17 05:31:58 UTCに更新
バージョン
- 2023-01-27 00:08:37 UTC(5)
- 2022-12-27 02:46:22 UTC(4)
- 2022-10-17 05:31:58 UTC(3)
- 2022-06-28 09:22:09 UTC(2)
- 2022-04-11 02:10:09 UTC(1)
改版理由
この論文はすでにRoboticaに拒否され、IEEE Accessに提出されるように変更されました。論文の最新バージョンを更新したいと思います。ライセンス
Copyright(c)2022
Zhang, Yachen
Kikuuwe, Ryo
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。