Free software for general prediction of interface chemical bonding at metal – oxide interface: InterChemBond - updated
DOI:
https://doi.org/10.51094/jxiv.339Keywords:
metal – oxide interface, interface chemistry, thermodynamic equilibrium, interface reaction, prediction softwareAbstract
The updated functions of a free software for general prediction of interface chemical bonding at metal – oxide interface, InterChemBond, is reported. So far, the interface between pure metal or alloy and 19 oxides without considering interface reaction was implemented in InterChemBond. With the current update, the number of oxides available for the prediction has become 83 in total, and a new prediction mode that considers interface reactions has been implemented. The principle of the prediction for the added oxides is explained. The principles and formula for predicting interface bonding with considering interface reactions are provided as well as some dump screens of the software.
Conflicts of Interest Disclosure
The author declares no potential conflict of interests.Downloads *Displays the aggregated results up to the previous day.
References
U. Alber, H. Mullejans, and M. Ruhle, Micron 30, 101–108 (1999); doi: 10.1016/S0968-4328(99)00013-X
V. Merlin and M. Eustathopoulos, J. Mater. Sci. 30, 3619–3624 (1995); doi: 10.1007/BF00351875
D. Chantain, F. Chabert, V. Ghetta, and J. Fouletier, J. Am. Ceram. Soc. 77, 197–201 (1994); doi: 10.1111/j.1151-2916.1994.tb06977.x
S. Shi, S. Tanaka, and M. Kohyama, Phys. Rev. B76, 075431 (2007); doi: 10.1103/PhysRevB.76.075431
S. Shi, S. Tanaka and M. Kohyama, J. Amer. Ceram. Soc. 90, 2429–2440 (2007); doi: 10.1111/j.1551-2916.2007.01769.x
S. Shi, S. Tanaka, and M. Kohyama, Mater. Trans. 47, 2696–2700 (2006); doi: 10.2320/matertrans.47.2696
K. Shiraishi, T. Nakayama, T. Nakaoka, A. Ohta, and S. Miyazaki, ECS Trans. 13, 21–27 (2008); doi: 10.1149/1.2908612
T. Nagata, P. Ahmet, Y. Z. Yoo, K. Yamada, K. Tsutsui, Y. Wada, and T. Chikyow, Appl. Surf. Sci. 252, 2503–2506 (2006); doi: 10.1016/j.apsusc.2005.05.085
A. Asthagiri, C. Niederberger, A. J. Francis, L. M. Porter, P. A. Salvador, and D. S. Sholl, Surf. Sci. 537, 134–152 (2003); doi: 10.1016/S0039-6028(03)00609-5
M. Yoshitake, S. Nemsak, T. Skala, N. Tsud, T. Kim, V. Matolin, and K. C. Prince, Surf. Sci. 604, 2150–2156 (2010); doi: 10.1016/j.susc.2010.09.007
K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, F. Ren, J. Crystal Growth, 287, 149–156 (2006); doi: 10.1016/j.jcrysgro.2005.10.059
S. J. Young, L. W. Ji, S. J. Chang, Y. K. Su, J. Crystal Growth, 293, 43–47 (2006); doi: 10.1016/j.jcrysgro.2006.03.059
T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, J. Crystal Growth, 281, 513–517 (2005); doi: 10.1016/j.jcrysgro.2005.04.056
M. Yoshitake, S. Yagyu, and T. Chikyow, J. Vac. Sci. Technol. A32, 021102 (2014); doi: 10.1116/1.4849375
M. Yoshitake, S. Yagyu, and T. Chikyow, International Journal of Metals, 2014, 120840, (2014); doi: 10.1155/2014/120840
M. Yoshitake, J. Vac. Sci. Technol. A 39, 063217 (2021); doi: 10.1116/6.0001312
M. Yoshitake, Jxiv, 2022; doi: 10.51094/jxiv.192
https://interchembond.nims.go.jp
M.Yoshitake, Y-R. Aparna and K. Yoshihara, J. Vac. Sci. Technol. A19, 1432 (2001); doi: 10.1116/1.1376699
M.Yoshitake, Jpn. J. Appl. Phys. 51, 085601 (2012); doi: 10.1143/JJAP.51.08560
Downloads
Posted
Submitted: 2023-03-22 12:40:32 UTC
Published: 2023-03-23 08:25:20 UTC
License
Copyright (c) 2023
Michiko Yoshitake
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.