Preprint / Version 1

Free software for general prediction of interface chemical bonding at metal – oxide interface: InterChemBond - updated

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.339

Keywords:

metal – oxide interface, interface chemistry, thermodynamic equilibrium, interface reaction, prediction software

Abstract

The updated functions of a free software for general prediction of interface chemical bonding at metal – oxide interface, InterChemBond, is reported. So far, the interface between pure metal or alloy and 19 oxides without considering interface reaction was implemented in InterChemBond. With the current update, the number of oxides available for the prediction has become 83 in total, and a new prediction mode that considers interface reactions has been implemented. The principle of the prediction for the added oxides is explained. The principles and formula for predicting interface bonding with considering interface reactions are provided as well as some dump screens of the software.

Conflicts of Interest Disclosure

The author declares no potential conflict of interests.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

U. Alber, H. Mullejans, and M. Ruhle, Micron 30, 101–108 (1999); doi: 10.1016/S0968-4328(99)00013-X

V. Merlin and M. Eustathopoulos, J. Mater. Sci. 30, 3619–3624 (1995); doi: 10.1007/BF00351875

D. Chantain, F. Chabert, V. Ghetta, and J. Fouletier, J. Am. Ceram. Soc. 77, 197–201 (1994); doi: 10.1111/j.1151-2916.1994.tb06977.x

S. Shi, S. Tanaka, and M. Kohyama, Phys. Rev. B76, 075431 (2007); doi: 10.1103/PhysRevB.76.075431

S. Shi, S. Tanaka and M. Kohyama, J. Amer. Ceram. Soc. 90, 2429–2440 (2007); doi: 10.1111/j.1551-2916.2007.01769.x

S. Shi, S. Tanaka, and M. Kohyama, Mater. Trans. 47, 2696–2700 (2006); doi: 10.2320/matertrans.47.2696

K. Shiraishi, T. Nakayama, T. Nakaoka, A. Ohta, and S. Miyazaki, ECS Trans. 13, 21–27 (2008); doi: 10.1149/1.2908612

T. Nagata, P. Ahmet, Y. Z. Yoo, K. Yamada, K. Tsutsui, Y. Wada, and T. Chikyow, Appl. Surf. Sci. 252, 2503–2506 (2006); doi: 10.1016/j.apsusc.2005.05.085

A. Asthagiri, C. Niederberger, A. J. Francis, L. M. Porter, P. A. Salvador, and D. S. Sholl, Surf. Sci. 537, 134–152 (2003); doi: 10.1016/S0039-6028(03)00609-5

M. Yoshitake, S. Nemsak, T. Skala, N. Tsud, T. Kim, V. Matolin, and K. C. Prince, Surf. Sci. 604, 2150–2156 (2010); doi: 10.1016/j.susc.2010.09.007

K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, F. Ren, J. Crystal Growth, 287, 149–156 (2006); doi: 10.1016/j.jcrysgro.2005.10.059

S. J. Young, L. W. Ji, S. J. Chang, Y. K. Su, J. Crystal Growth, 293, 43–47 (2006); doi: 10.1016/j.jcrysgro.2006.03.059

T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, J. Crystal Growth, 281, 513–517 (2005); doi: 10.1016/j.jcrysgro.2005.04.056

M. Yoshitake, S. Yagyu, and T. Chikyow, J. Vac. Sci. Technol. A32, 021102 (2014); doi: 10.1116/1.4849375

M. Yoshitake, S. Yagyu, and T. Chikyow, International Journal of Metals, 2014, 120840, (2014); doi: 10.1155/2014/120840

M. Yoshitake, J. Vac. Sci. Technol. A 39, 063217 (2021); doi: 10.1116/6.0001312

M. Yoshitake, Jxiv, 2022; doi: 10.51094/jxiv.192

https://interchembond.nims.go.jp

M.Yoshitake, Y-R. Aparna and K. Yoshihara, J. Vac. Sci. Technol. A19, 1432 (2001); doi: 10.1116/1.1376699

M.Yoshitake, Jpn. J. Appl. Phys. 51, 085601 (2012); doi: 10.1143/JJAP.51.08560

Downloads

Posted


Submitted: 2023-03-22 12:40:32 UTC

Published: 2023-03-23 08:25:20 UTC
Section
Nanosciences & Materials Sciences