Preprint / Version 1

Analysis of the characteristics of Japanese institutional repositories using IRDB data

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.331

Keywords:

IRDB, Departmental Bulletin Paper, institutional repositories

Abstract

This paper is an analysis of the characteristics of Japanese institutional repositories from NII's IRDB data using PANDAS, a library for data analysis in Python. The data revealed that Japanese institutional repositories have  significant characteristics in their departmental bulletin paper (Kiyou),  and I extracted the characteristic institutions.

Conflicts of Interest Disclosure

The authors declare no conflicts of interest associated with this manuscript.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

寺田学, 辻真吾, 鈴木たかのり, 福島真太朗: Python によるあたらしいデータ分析の教科書翔泳社(2022).

大園隼彦, 片岡朋子, 高橋菜奈子, 田口忠祐, 林豊, 南山泰之: “JPCOAR スキーマの策定:日本の学術成果の円滑な国際的流通を目指して.”情報管理, vol. 60, no. 10, 2017,pp. 719–29

Posted


Submitted: 2023-03-12 07:15:13 UTC

Published: 2023-03-22 06:33:42 UTC
Section
Information Sciences