Development of a UAV-based VR imaging system for wetland ecosystem monitoring
DOI:
https://doi.org/10.51094/jxiv.1314Keywords:
Drone, Virtual reality, 360 camera, Flight Protocol, Panorama tourAbstract
In this study, VR image capturing equipment capable of approaching targets and being inserted into vegetation was developed using an unmanned aerial vehicle (UAV) and an omnidirectional camera (VR camera). Furthermore, a capturing protocol for this equipment was established. The effectiveness of the equipment was confirmed through field operations in various wetlands in Hokkaido. To satisfy the requirements of equipment transportation, operational difficulty, flight duration, positioning accuracy, portability, and image quality, a suitable UAV and VR camera were selected. Subsequently, custom parts for the equipment were developed to satisfy these requirements. To enable efficient and rapid deployment, a dedicated capturing protocol was also developed. Performance tests and VR image capturing were conducted at 26 wetlands in Hokkaido using the developed equipment and protocol. Issues encountered during capturing were addressed, and the parts and protocols were improved accordingly. Consequently, 85% of all flight and capturing attempts were successful. The previously existing issues associated with using UAVs and VR cameras have now been significantly improved. As a result, a method for acquiring high-resolution VR images with high-precision coordinate information has been established. This non-invasive, immersive, wide-ranging, and high-resolution capturing method has the potential to be a significant tool and monitoring technique for the accurate archiving of the status of wetland ecosystems for future reference.
Conflicts of Interest Disclosure
No COI to disclose.Downloads *Displays the aggregated results up to the previous day.
References
Adam E., Mutanga O. & Rugege D. (2010) Multispectral an hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296.
Calantropio A., Chiabrando F., Einaudi D. & Teppati L.L. (2019) 360° Images For UAV Multisensor Data Fusion: First Tests and Results, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13: 227-234. (doi: 10.5194/isprs-archives-XLII-2-W13-227-2019).
Cruzan M.B., Weinstein B.G., Grasty M.R., Kohrn B.F., Hendrickson E.C., Arredondo T.M. & Thompson P.G. (2016) Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Appl Plant Sci 4(9): apps.1600041. (doi: 10.3732/apps.1600041).
Dronova I., Kislik C., Dinh Z. & Kelly M. (2021) A Review of Unoccupied Aerial Vehicle Use in Wetland Applications: Emerging Opportunities in Approach, Technology, and Data. Drones 5(2): 45 (https://doi.org/10.3390/drones5020045).
Ducks Unlimited Canada (2024) Discover Conservation in Canada, Education (https://www.ducks.ca/our-work/education/, 2024年12月4日確認).
冨士田裕子・李娥英・孫仲益・倉博子・首藤光太郎・小林春毅(2020)全国湿地データベース(http://wetlands.info/tools/wetlandsdb/wetlandsdb/, 2024年12月4日確認).
Humpe A. (2020) Bridge Inspection with an Off-the-Shelf 360° Camera Drone. Drones, 4(4): 67. (doi: https://doi.org/10.3390/drones4040067).
環境省 (2004) 自然再生 釧路から始まる.環境省自然環境局 自然環境共生技術協会,東京.
国土交通省(2024)無人航空機(ドローン・ラジコン機等)の飛行ルール(https://www.mlit.go.jp/koku/koku_tk10_000003.html, 2024年12月4日確認).
Lan G., Sun J., Li C., Ou Z., Luo Z., Liang J. & Hao Q. (2016) Development of UAV based virtual reality systems. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, pp. 481-486. (doi: 10.1109/MFI.2016.7849534.)
中村隆俊・大木慎也・山田浩之(2021)UAV 空撮による全方位動画を用いた湿原植生調査法の開発と評価.応用生態工学 23(2): 383-393. (doi: https://doi.org/10.3825/ece.19-00022).
Nakamura T., Uemura S. & Yabe K. (2002) Hydrochemical regime of fen and bog in north Japanese mires as an influence on habitat and above-ground biomass of Carex species. Journal of Ecology 90: 1017-1023.
Ou K.L., Chu S.T. & Tarng W. (2021) Development of a Virtual Wetland Ecological System Using VR 360° Panoramic Technology for Environmental Education. Land 10(8): 829. (doi: https://doi.org/10.3390/land10080829).
Rydin H. & Jeglum J.K. (2013) The Biology of Peatlands. 2nd edition. Oxford University Press, Oxford.
湿地VR教育グループ(2024)湿地環境教育VRオープン教材(https://wetland-vr-education.org/, 2024年12月4日確認).
鈴木透・冨士田裕子・小林春毅・李娥英・新美恵理子・小野理 (2016) 北海道の湿地における植物データベースの構築と保全優先湿地の選定.保全生態学研究 21: 125-134.
鈴木透・山田浩之・中村隆俊・田開寛太郎(投稿中)オルソ画像とVR画像を用いた植生画像デジタルアーカイブの構築:静狩湿原の事例, 応用生態工学.
田開寛太郎・山田浩之・鈴木透・中村隆俊(2023)VR教材を用いた教育実践の研究動向と環境教育に関する一考察. 教育総合研究 (7): 51-64.
The Wetlands Institute (2024) The Virtual Wetlands Experience ( https://wetlandsinstitute.org/virtual-wetlands-, 2024年12月4日確認)
Xie Y., Sha Z. & Yu M. (2008) Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1: 9-23.
山田浩之・菅原隆介・鈴木透・中村隆俊・田開寛太郎(2025)UAVフライトログを用いた後処理ジオタグ修正プログラム, Jxiv(doi: https://doi.org/10.51094/jxiv.1311).
Zedler J.B. & Kercher S. (2005) WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. JF Annual Review of Environment and Resources 30: 39-74. (doi: https://doi.org/10.1146/annurev.energy.30.050504.144248).
Downloads
Posted
Submitted: 2025-06-24 02:02:52 UTC
Published: 2025-07-04 01:46:32 UTC
License
Copyright (c) 2025
Hiroyuki Yamada
Toru Suzuki
Takatoshi Nakamura
Kantaro Tabiraki

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.