Development of an Inspection Information Management System for Infrastructures using Spherical Images
DOI:
https://doi.org/10.51094/jxiv.1106Keywords:
spherical image, structure from motion, maintenance, infrastructure, shooting conditionsAbstract
The use of 360° cameras for capturing spherical images of infrastructures has gained attention to enhance maintenance efficiency. However, common viewers are generally limited to displaying images, making it cumbersome to search for and view specific ones. Additionally, they do not accommodate essential maintenance needs, such as recording and verifying structure names, capture dates, damage locations, and damage types. This study developed an inspection information management system that enables seamless verification of capture locations and damage information by linking the camera poses of multiple spherical images using Structure from Motion. This system utilizes images taken with commercially available 360° cameras and was applied to multiple bridges to evaluate its effectiveness. It is designed for both cloud-based and local environments, allowing administrators to adapt its use to their operational requirements.
Conflicts of Interest Disclosure
The authors declare no conflicts of interest.Downloads *Displays the aggregated results up to the previous day.
References
Ellenberg, A., Branco, L., Krick, A., Bartoli, I., and Kontsos, A.: Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation, Journal of Infrastructure Systems, Vol. 21, Issue 3, 04014054, 2015.
Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K., Lewis, D. and Tse, Z. T. H.: State-of-the-art technologies for UAV inspections, IET Radar, Sonar & Navigation, Vol.12, Issue.2, pp.151–164, 2018.
Chun, P. J., Dang, J., Hamasaki, S., Yajima, R., Kameda, T., Wada, H., Yamane, T., Izumi, S. and Nagatani, K.: Utilization of Unmanned Aerial Vehicle, Artificial Intelligence, and Remote Measurement Technology for Bridge Inspections, Journal of Robotics and Mechatronics, Vol.32, Issue.6, pp.1244–1258, 2020.
関和彦,岩佐宏一,窪田諭,塚田義典,安室喜弘,今井龍一:小規模橋梁の安全確認のための効率的点検技術の研究開発,土木学会論文集F3(土木情報学),Vol.75,No.2,pp.II_8–II_16,2019.
郭栄珠,西村徹:既設道路橋の3次元モデル作成に効果的な点群データ計測方法に関する研究,第5回i-Constructionの推進に関するシンポジウム講演概要集,pp.25–28,2023.
川俣英之,山部哲,川崎巧:市販カメラによる集水井工内部の撮影事例,日本地すべり学会誌,Vol.54, No.6,pp.283–288,2017.
小椋紀彦,小西雄治,福地良彦,塩谷智基:360 度カメラ撮影による点群化と橋梁の定期点検支援技術開発,第34回日本情報地質学会講演会講演要旨集,pp.19–20,2023.
関拓矢,白石航希,猪子敬之介:橋梁点検プラットフォームへの水管橋実装の試み,令和5年度全国会議(水道研究発表会)講演集,pp.496–497,2023.
岡本哲典,横山洋範,鈴木達朗,藤木三智成:360度カメラ映像と3D道路施設情報を活用した道路管理システムの開発,第6回i-Constructionの推進に関するシンポジウム講演概要集,pp.133–136,2024.
木下義昭:橋梁定期点検の義務化をチャンスと捉えた定期点検実務のスパイラルアップとコスト縮減,インフラメンテナンス実践研究論文集,Vol.4,No.1, pp.58–68,2025.
Matterport: https://matterport.com/ (accessed 2025.2.24)
Leica BLK360: https://shop.leica-geosystems.com/jp/ja-JP/leica-blk/blk360/overview (accessed 2025.2.24)
木本啓介,松田浩:中小橋梁の点検におけるSfMの活用方法の比較・検証,実験力学,Vol.17,No.4,pp.290–297,2017.
阿部真己,持田史佳,渡邊凌:デジタルツイン点検実現に向けたNeural Radiance Field 活用の試み,AI・データサイエンス論文集,Vol.5,No.3,pp.286–294,2024.
Kubo, S., Nakayama, N., Matsuda, S., and Chun, P.J.: Corrosion Damage Detection in Headrace Tunnel Using YOLOv7 with Continuous Wall Images, Applied Sciences, Vol.13, Issue 16, 9388, 2023.
Zhou, K., Lei, D., Chun, P. J., She, Z., He, J., Du, W., and Hong, M.: Evaluation of BFRP strengthening and repairing effects on concrete beams using DIC and YOLO-v5 object detection algorithm, Construction and Building Materials, 411, 134594, 2024.
Yamane, T., Chun, P. J., and Honda, R.: Detecting and localising damage based on image recognition and structure from motion, and reflecting it in a 3D bridge model, Structure and Infrastructure Engineering, Vol.20, Issue 4, pp.594–606, 2024.
Hattori, K., Oki, K., Sugita, A., Sugiyama, T., and Chun, P. J.: Deep learning-based corrosion inspection of long-span bridges with BIM integration. Heliyon, Vol.10, Issue 15, e35308, 2024.
Chun, P. J., and Kikuta, T.: Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation. Computer‐Aided Civil and Infrastructure Engineering, Vol. 39, Issue 17, pp. 2642-2661, 2024.
Mardan, A. and Chakkaev, A: Express.Js Guide: The Comprehensive Book on Express. JS, CreateSpace Independent Publishing Platform, 2014.
Strong, J.: PM2: Process Management for Node.js Applications, PM2 Documentation, https://pm2.keymetrics.io/docs/usage/quick-start/ (accessed 2025.2.24)
Chun, P. J., Yamane, T., and Maemura, Y. : A deep learning‐based image captioning method to automatically generate comprehensive explanations of bridge damage, Computer‐Aided Civil and Infrastructure Engineering, Vol.37, Issue 11, pp.1387–1401, 2022.
Kunlamai, T., Yamane, T., Suganuma, M., Chun, P. J., and Okatani, T.: Improving visual question answering for bridge inspection by pre‐training with external data of image–text pairs, Computer‐Aided Civil and Infrastructure Engineering, Vol.39, Issue 3, pp.345–361, 2024.
Chun, P. J., Chu, H., Shitara, K., Yamane, T., and Maemura, Y.: Implementation of explanatory texts output for bridge damage in a bridge inspection web system, Advances in Engineering Software, Vol.195, 103706, 2024.
Lin, C., Abe, S., Zheng, S., Li, X., and Chun, P. J.: A structure‐oriented loss function for automated semantic segmentation of bridge point clouds, Computer‐Aided Civil and Infrastructure Engineering, Vol.40, Issue 6, pp.801–816, 2025.
稲富翔伍,全邦釘:点群の画像化とディープラーニングを用いた橋梁点群のセグメンテーション,AI・データサイエンス論文集,Vol.2,No. J2,pp.418–427,2021.
Abe, S., Chen, Y., Kawanowa, S., and Chun, P. J.: Proposal of a deep learning-based automatic segmentation method for raster diagrams of existing bridges, Intelligence, Informatics and Infrastructure, 2025. (Accepted).
Downloads
Posted
Submitted: 2025-02-26 08:41:00 UTC
Published: 2025-02-27 23:31:49 UTC
License
Copyright (c) 2025
Tatsuro Yamane
Yu Chen
Shiori Kubo
Wakana Asano
Naomichi Katayama
Ichiro Iwaki
Pang-Jo Chun

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.