Preprint / Version 2

Estimation of the timescale for public awareness of the latest research results in astronomy in the 1970s

New Value of Reports in School Education as Research Objectives

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.1019

Keywords:

History of Astronomy Education, popularisation of astronomy, Report, investigative learning

Abstract

A research report on astronomy created by ordinary junior high school students in 1972 has been discovered. Until now, such past reports in school education have not been considered research objects. However, unlike academic papers and newspaper articles, they provide valuable data for assessing the scientific awareness of the general public in an era before the advent of social media. Moreover, with the digitization of these materials and the significantly reduced cost of preservation, many similar documents are expected to surface in the future. It is therefore crucial to evaluate their value by incorporating insights into the social context of the time while individuals with firsthand knowledge of that period are still alive. This study explores the significance of "past reports in school education" as research materials by analyzing the astronomy-related knowledge that junior high school students could access and investigate at the time. As part of this effort, we compare descriptions of distance measurements to the Moon and the farthest celestial bodies mentioned in the report with the latest research findings available at that time. Through this comparison, we estimate that the dissemination and assimilation of new astronomical findings into general society took approximately four to seven years.

Conflicts of Interest Disclosure

No conflicts of interest to disclose

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

中村征樹 (2008) 「サイエンスカフェ 現状と課題」, 科学技術社会論研究, 5:31.

高梨直紘 (2014) 「「知の循環」の文脈での対話型イベントの実施事例の報告 ~まるのうち宇宙塾の取り組み~」, 天文教育, 26:2.

Sturgis, P., Brunton-Smith, I., Jackson, J. (2021) ‘Trust in science, social consensus and vaccine confidence’, Nat Hum Behav 5, 1528.

Pavić, Ž., et al. (2023) ‘The Deficit and Contextual Models of Vaccine Hesitancy: A Test of the Mediation Paths’, SAGE Open, 13:4.

大朝由美子 (2023) 「教員志望学生を対象とした天文分野の理解度や興味・関心に関する継続調査:10年間の変遷」, Stars and Galaxies, 6:8.

米国研究製薬工業協会 (2012) 「ワクチン ファクトブック 2012」.

Artaud, C., Kara, L., Launay, O. (2019) ‘Vaccine Development: From Preclinical Studies to Phase 1/2 Clinical Trials’, Malaria Control and Elimination. Methods in Molecular Biology, 165.

Alqahtani, A., et al. (2021) ‘General Public Knowledge of Coronavirus Disease 2019 (COVID-19) at Early Stages of the Pandemic: A Random Online Survey in Saudi Arabia’, Patient Preference and Adherence, 15:601.

本田沙織 (2016) 「宇宙開発とメディア報道 --朝日新聞科学部はどう宇宙開発を報じてきたか--」, 卒業論文 (京都大学).

椿本弥生, 柳沢昌義, 赤堀侃司 (2008) 「人文・社会科学分野を中心とした大学教員によるレポート実施と採点の現状に関する調査」, メディア教育研究, 5:121.

木村明憲, 渡邉文枝 (2024) 「レポートに対する自己評価・相互評価・それら評価結果の分析活動が学習の自己調整に及ぼす影響」, 日本教育工学会論文誌, 48:533.

石田光宏 (2022) 「高等学校「課題探究型授業」における天文分野の調査結果」, 天文教育, 34:2.

小森長生 (1969) 「月の地質学(4)」, 地質ニュース, 183,:26.

Von R. S. Saunders, E. L. Haines, J. E. Conel (1970) ‘Morphology and origin of lunar craters’, Polarforschung, 40:33.

Hartmann, W. K., Davis, D. R. (1975) ‘Satellite-sized planetesimals and lunar origin’, Icarus, 24:504.

Lowel, P. (1908) ‘Mars As The Abode Of Life’, Kessinger Publishing.

R. B. Leighton, et al. (1965) ‘Mariner IV Photography of Mars: Initial Results’, Science, 149:627.

H. P. Klein, et al. (1976) ‘The Viking Biological Investigation: Preliminary Results’, Science, 194:99.

佐々木晶 (2004) 「マーズローバー,スピリットとオポチュニティの火星表面探査」, 遊・星・人, 13, 156.

M. E. Brown, C. A. Trujillo, D. L. Rabinowitz (2005) ‘Discovery of a Planetary-sized Object in the Scattered Kuiper Belt’, ApJ, 635:L97.

J. W. Christy, R. S. Harrington (1978) ‘The satellite of Pluto’, AJ, 83:1005.

D. Jewitt, J. Luu (1993) ‘Discovery of the candidate Kuiper belt object 1992 QB1’, Nature, 362:730.

J. H. Oort (1951) ‘Origin and development of comets’, The Observatory, 71:129.

LIGO Scientific Collaboration and Virgo Collaboration (2016) ‘Observation of Gravitational Waves from a Binary Black Hole Merger’, Phys. Rev. Lett., 116:061102.

The Event Horizon Telescope Collaboration (2019) ‘First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole’, ApJL, 875:L1.

津田雄一ら (2021) 「「はやぶさ2」カプセル地球帰還」, ISASニュース, 478:5.

橘篤志 (1972) 「レーザーによる月面測距」, 応用物理, 41:627.

冨田弘一郎 (1973) 「東京天文台での月レーザ測距ものがたり(I)」, 天文月報, 66:287.

冨田弘一郎 (1973) 「東京天文台での月レーザ測距ものがたり(II)」, 天文月報, 66:317.

Lemaître, G. (1927) ‘Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques’, Annales de la Société Scientifique de Bruxelles, A47:49.

Hubble, E. (1929) ‘A relation between distance and radial velocity among extra-galactic nebulae’, Proc. Natl. Acad. Sci. U.S.A., 15:168.

S. Carniani, et al. (2024) ‘Spectroscopic confirmation of two luminous galaxies at a redshift of 14’, Nature, 633:318.

M. Schmidt (1965) ‘Large Redshifts of Five Quasi-Stellar Sources’, ApJ, 141:1295.

M. Schmidt, E. T. Olsen (1968) ‘Spectrum of the Large Redshift Quasi-Stellar Source 4C 25.5’, AJ, 73:S117.

E. M. Burbidge (1968) ‘Spectroscopic observations of twenty-five quasi-stellar objects’, ApJL, 154:L109.

R. Lynds, D. Wills (1970) ‘The Unusually Large Redshift of 4C 05.34’, Nature, 226:532.

Adams, J. D., Clemmons, J. R., Stephan, P. E. (2006) ‘How Rapidly Does Science Leak Out?’, National Bureau of Economic Research Working Paper Series, 11997.

Adams, J. D., Clemmons, J. R. (2013) ‘How Rapidly Does Science Leak Out? A Study of the Diffusion of Fundamental Ideas’, Journal of Human Capital, 7:191.

Posted


Submitted: 2025-01-14 15:31:43 UTC

Published: 2025-01-17 10:26:31 UTC — Updated on 2025-04-10 09:36:40 UTC

Versions

Reason(s) for revision

Because the paper was revised according to the peer review report
Section
Psychology, Education