プレプリント / バージョン2

Bayesian optimization for parameter estimation of a local particle filter

##article.authors##

  • AKAMI, Shoichi Graduate School of Life and Environmental Sciences, University of Tsukuba
  • Keiichi KONDO Meteorological Research Institute, Japan Meteorological Agency
  • Hiroshi L. TANAKA Organization of Volcanic Disaster Mitigation
  • Mizuo KAJINO Meteorological Research Institute, Japan Meteorological Agency

DOI:

https://doi.org/10.51094/jxiv.1242

キーワード:

Local particle filter、 Parameter estimation、 Bayesian optimization、 Gaussian process regression

抄録

The Particle filter (PF) is a powerful data assimilation method that does not assume the linearity in the time evolution of errors or Gaussian error distributions. However, the number of particles required increases exponentially with the dimensions of the dynamical system, which is a bottleneck when applying the PF to numerical weather prediction. Local particle filter (LPF) realizes the PF in high-dimensional systems by the localization, but it has high parameter sensitivity and is challenging to operate stably. On the other hand, when using a strong nonlinear observation operator, it is possible to estimate the analysis with higher accuracy than the local ensemble transform Kalman filter by setting the inflation factor  and the localization scale  to the optima. Therefore, an efficient parameter estimation method is required.

Bayesian optimization (BO) is a method for efficiently solving optimization problems of black box functions with high computational costs, and is used for parameter optimization of neural networks. Therefore, we estimated  and  that minimize the root mean square error between the observations and the forecasts (RMSE(o vs. f)) in the LPF using the BO in the Lorenz-96 40-variable model. As a result, the BO estimated  and  with higher accuracy than random sampling and was robust to changes in the observations to a certain extent. In addition, it was important to adopt the kernel functions and the acquisition functions tailored to the characteristics of the problem to improve the estimation accuracy of the BO.

This study clarified that the BO contributes to improving the practicality of the LPF and suggested what approach should be adopted when the number of estimated parameters increases. By developing this technology, the prediction accuracy of heavy rainfall is expected to improve in the future. The usefulness of the BO will eventually be proven in atmospheric model experiments aimed at the practical application of the LPF.

利益相反に関する開示

The authors have no conflicts of interest relevant to this study.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Byrd, R. H., and P. Lu, J. Nocedal, C. Zhu, 1995: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput., 16(5), 1190-1208, https://doi.org/10.1137/0916069.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162, https://doi.org/10.1029/94JC00572.

Farchi, A., and M. Bocquet, 2018: Review article: Comparison of local particle filters and new implementations. Nonlinear Processes Geophys., 25, 765-807, https://doi.org/10.5194/npg-25-765-2018.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757, https://doi.org/10.1002/qj.49712555417.

González, J., and Z. Dai, P. Hennig, N. D. Lawrence, 2015: Batch Bayesian Optimization via Local Penalization. arXiv, https://arxiv.org/abs/1505.08052.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140:2, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.

Kondo, K., and T. Miyoshi, 2019: Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model. Nonlinear Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019.

Kotsuki, S., T. Miyoshi, K. Kondo, and R. Potthast, 2022: A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF, Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022.

Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38(2), 97–110, https://doi.org/10.3402/tellusa.v38i2.11706.

Lorenz, E. N., and K. A. Emanuel, 1998: Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model. J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

Lunderman, S., M. Morzfeld, and D. J. Posselt, 2021: Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above. Tellus A, 73(1), p. 1924952, https://doi.org/10.1080/16000870.2021.1924952.

Mckay, M. D., R. J. Beckman, and W. J. Conover, 2000: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics, 42(1), 55–61, https://doi.org/10.1080/00401706.2000.10485979.

Mockus, J., 1989: Mathematics and its Applications: Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Academic Publishers, 270pp. https://doi.org/10.1007/978-94-009-0909-0.

Otsuka, S., and T. Miyoshi, 2015: A Bayesian Optimization Approach to Multimodel Ensemble Kalman Filter with a Low-Order Model. Mon. Wea. Rev., 143, 2001–2012, https://doi.org/10.1175/MWR-D-14-00148.1.

Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391–405, https://doi.org/10.5194/npg-23-391-2016.

Poterjoy, J., 2016: A Localized Particle Filter for High-Dimensional Nonlinear Systems. Mon. Wea. Rev., 144, 59–76, https://doi.org/10.1175/MWR-D-15-0163.1.

Poterjoy, J., and J. L. Anderson, 2016: Efficient Assimilation of Simulated Observations in a High-Dimensional Geophysical System Using a Localized Particle Filter. Mon. Wea. Rev., 144, 2007–2020, https://doi.org/10.1175/MWR-D-15-0322.1.

Potthast, R., A. Walter, and A. Rhodin, 2019: A Localized Adaptive Particle Filter within an Operational NWP Framework. Mon. Wea. Rev., 147, 345–362, https://doi.org/10.1175/MWR-D-18-0028.1.

Rasmussen, C. E., and H. Nickisch, 2010: Gaussian Processes for Machine Learning (GPML) Toolbox. J. Mach. Learn. Res, 11, 3011–3015, https://dl.acm.org/doi/abs/10.5555/1756006.1953029.

Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes for Machine Learning. the MIT Press, 266pp.

Sawada, Y., 2020: Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model. J. Geophys. Res.: Atmos., 125, e2020JD032688, https://doi.org/10.1029/2020JD032688.

Shahriari, B., and K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, 2016: Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE, 104(1), 148-175, https://doi.org/10.1109/JPROC.2015.2494218.

Snoek, J., H. Larochelle, and R. P. Adams, 2012: Practical Bayesian Optimization of Machine Learning Algorithms, https://doi.org/10.48550/arXiv.1206.2944.

Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to High-Dimensional Particle Filtering. Mon. Wea. Rev., 136, 4629–4640, https://doi.org/10.1175/2008MWR2529.1.

Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci., 15, 293–305. https://doi.org/10.1007/s10596-010-9207-1.

公開済


投稿日時: 2025-05-08 04:46:33 UTC

公開日時: 2025-05-09 09:13:15 UTC — 2025-05-27 08:03:05 UTCに更新

バージョン

改版理由

To reflect revisions made during peer review in the preprint.
研究分野
地球科学・天文学