プレプリント / バージョン1

Bayesian optimization for parameter estimation of local particle filter

##article.authors##

  • AKAMI, Shoichi Graduate School of Life and Environmental Sciences, University of Tsukuba
  • Keiichi KONDO Meteorological Research Institute, Japan Meteorological Agency
  • Hiroshi L. TANAKA Organization of Volcanic Disaster Mitigation
  • Mizuo KAJINO Meteorological Research Institute, Japan Meteorological Agency

DOI:

https://doi.org/10.51094/jxiv.1242

キーワード:

Local particle filter、 Parameter estimation、 Bayesian optimization、 Gaussian process regression

抄録

The particle filter (PF) is a powerful data assimilation method that does not assume linearity or Gaussianity. However, its application to numerical weather prediction is limited by the exponentially increasing number of particles required as the dimensionality of the dynamical system rises. Although a local particle filter (LPF) achieves the PF in high-dimensional systems through localization, the LPF remains unstable owing to its high parameter sensitivity. In the PF, maintaining particle diversity is essential to prevent “weight collapse,” and an inflation factor that smooths weights among particles is a crucial parameter that should be optimized in the LPF.

Bayesian optimization (BO) is a method for parameter estimation that minimizes (or maximizes) an objective function and is used for parameter optimization of neural networks. This study discussed the benefits of using BO within the LPF framework. As a proof of concept, we used BO to estimate the inflation factor that minimizes the root mean square error between observations and forecasts in the Lorenz-96 40-variable model. The BO quickly estimated the optimal inflation factor equivalent to the brute-force method, allowing the LPF to work stably for a decade scale. Furthermore, our method demonstrated robustness to changes in initial conditions and observations. In conclusion, using BO could greatly reduce the burden and computational cost associated with parameter optimization. The development of BO is expected to lead to further practical application of the LPF and ultimately improve the accuracy of forecasts for torrential rainfall. The benefits of BO will eventually be demonstrated in experiments with atmospheric models aimed at the practical application of the LPF.

利益相反に関する開示

The authors have no conflicts of interest relevant to this study.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162, https://doi.org/10.1029/94JC00572.

Fletcher, R., 2000: Practical Methods of Optimization. John Wiley & Sons, Ltd, 436pp, https://doi.org/10.1002/9781118723203.fmatter.

Farchi, A., and M. Bocquet, 2018: Review article: Comparison of local particle filters and new implementations. Nonlinear Processes Geophys., 25, 765-807, https://doi.org/10.5194/npg-25-765-2018.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757, https://doi.org/10.1002/qj.49712555417.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140:2, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.

Kondo, K., and T. Miyoshi, 2019: Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model. Nonlinear Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019.

Kotsuki, S., T. Miyoshi, K. Kondo, and R. Potthast, 2022: A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF, Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022.

Liu, H., and X. Zou, 2001: The Impact of NORPEX Targeted Dropsondes on the Analysis and 2–3-Day Forecasts of a Landfalling Pacific Winter Storm Using NCEP 3DVAR and 4DVAR Systems, Mon. Wea. Rev., 129, 1987–2004, https://doi.org/10.1175/1520-0493(2001)129%3C1987:TIONTD%3E2.0.CO;2.

Lorenz, E. N., and K. A. Emanuel, 1998: Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model. J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

Lunderman, S., M. Morzfeld, and D. J. Posselt, 2021: Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above. Tellus A, 73(1), p. 1924952, https://doi.org/10.1080/16000870.2021.1924952.

Mckay, M. D., R. J. Beckman, and W. J. Conover, 2000: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics, 42(1), 55–61, https://doi.org/10.1080/00401706.2000.10485979.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys, 21(6), 1087–1092, https://doi.org/10.1063/1.1699114.

Miyoshi, T., 2011: The Gaussian Approach to Adaptive Covariance Inflation and Its Implementation with the Local Ensemble Transform Kalman Filter. Mon. Wea. Rev., 139, 1519–1535, https://doi.org/10.1175/2010MWR3570.1.

Mochihashi, D., and S. Oba, 2019: Machine learning professional series: Gaussian process and machine learning. Horikoshi S. (eds.), Kodansha scientific, 233pp.

Mockus, J., 1989: Mathematics and its Applications: Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Academic Publishers, 270pp. https://doi.org/10.1007/978-94-009-0909-0.

Otsuka, S., and T. Miyoshi, 2015: A Bayesian Optimization Approach to Multimodel Ensemble Kalman Filter with a Low-Order Model. Mon. Wea. Rev., 143, 2001–2012, https://doi.org/10.1175/MWR-D-14-00148.1.

Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391–405, https://doi.org/10.5194/npg-23-391-2016.

Poterjoy, J., 2016: A Localized Particle Filter for High-Dimensional Nonlinear Systems. Mon. Wea. Rev., 144, 59–76, https://doi.org/10.1175/MWR-D-15-0163.1.

Poterjoy, J., and J. L. Anderson, 2016: Efficient Assimilation of Simulated Observations in a High-Dimensional Geophysical System Using a Localized Particle Filter. Mon. Wea. Rev., 144, 2007–2020, https://doi.org/10.1175/MWR-D-15-0322.1.

Potthast, R., A. Walter, and A. Rhodin, 2019: A Localized Adaptive Particle Filter within an Operational NWP Framework. Mon. Wea. Rev., 147, 345–362, https://doi.org/10.1175/MWR-D-18-0028.1.

Sawada, Y., 2020: Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model. J. Geophys. Res.: Atmos., 125, e2020JD032688, https://doi.org/10.1029/2020JD032688.

Snoek, J., H. Larochelle, and R. P. Adams, 2012: Practical Bayesian Optimization of Machine Learning Algorithms, https://doi.org/10.48550/arXiv.1206.2944.

Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to High-Dimensional Particle Filtering. Mon. Wea. Rev., 136, 4629–4640, https://doi.org/10.1175/2008MWR2529.1.

Sobol', I. M., 1967: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4), 86-112, https://doi.org/10.1016/0041-5553(67)90144-9.

Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci., 15, 293–305. https://doi.org/10.1007/s10596-010-9207-1.

公開済


投稿日時: 2025-05-08 04:46:33 UTC

公開日時: 2025-05-09 09:13:15 UTC
研究分野
地球科学・天文学