需要主導型の輸送ネットワーク形成: Hub and Spoke 構造の創発
DOI:
https://doi.org/10.51094/jxiv.749キーワード:
hub and spoke、 規模の経済、 ポテンシャル・ゲーム、 確率安定性、 minimum concave-cost network flow problem抄録
本研究では,Hub and Spoke (HS) 構造の創発を再現しうる需要主導型の輸送ネットワーク形成ゲームを 構築し,その均衡状態の性質を明らかにする.具体的には,まず,輸送サービス利用者の選択行動が輸送 ネットワークを形成する過程を集団ゲームとして定式化し,そのゲームがポテンシャル・ゲームに属する ことを明らかにする.続いて,このゲームに対応するポテンシャル最大化問題が Minimum Concave-cost Network Flow Problem (MCNFP) と同じ数理構造を持つ問題に変換できることを示し,MCNFP に対する 大域的最適化アルゴリズムを導入する.数値実験により,ゲームの確率安定な均衡状態として HS 構造を 有する輸送ネットワークが形成されることを明らかにする.
利益相反に関する開示
本論文に関して,開示すべき利益相反関連事項はない.ダウンロード *前日までの集計結果を表示します
引用文献
Derudder, B., Devriendt, L. and Witlox, F.: Flying where you don't want to go: An empirical analysis of hubs in the global airline network, Journal of economic and social geography, Vol.98, No.3, pp.307-324, 2007.
Hu, Y. and Zhu, D.: Empirical analysis of the worldwide maritime transportation network, Physica A: Statistical Mechanics and its Applications, Vol.388, No.10, pp.2061-2071, 2009.
Bowen, J. T.: A spatial analysis of FedEx and UPS: hubs, spokes, and network structure, Journal of Transport Geography, Vol.24, pp.419-431, 2012.
O'Kelly, M. E. and Miller, H. J.: The hub network design problem: A review and synthesis, Journal of Transport Geography, Vol.2, No.1, pp.31-40, 1994.
O'Kelly, M. E.: A geographer's analysis of hub-and spoke networks, Journal of Transport Geography, Vol.6, No.3, pp.171-186, 1998.
Bryan, D. L. and O'Kelly, M. E.: Hub-and-spoke networks in air transportation: An analytical review, Journal of regional science, Vol.39, No.2, pp.275-295, 1999.
Pels, E.: Optimality of the hub-spoke system: A review of the literature, and directions for future research, Transport Policy, Vol.104, pp.A1-A10, 2021.
O'Kelly, M. E.: The location of interacting hub facilities, Transportation Science, Vol.20, No.2, pp.92-106, 1986.
Hendricks, K., Piccione, M. and Tan, G.: The economics of hubs: The case of monopoly, The Review of economic studies, Vol.62, No.1, pp.83-99, 1995.
Aykin, T.: Networking policies for Hub-and-Spoke systems with application to the air transportation system, Transportation Science, Vol.29, No.3, pp.201-221, 1995.
Gillen, D.: The evolution of networks with changes in industry structure and strategy: Connectivity, Huband-Spoke and alliances, Research in Transportation Economics, Vol.13, pp.49-73, 2005.
Sun, Z. and Zheng, J.: Finding potential hub locations for liner shipping, Transportation Research Part B: Methodological, Vol.93, pp.750-761, 2016.
Campbell, J. F. and O'Kelly, M. E.: Twenty-Five years of hub location research, Transportation Science, Vol.46, No.2, pp.153-169, 2012.
Mori, T.: Increasing returns in transportation and the formation of hubs, Journal of Economic Geography, Vol.12, No.4, pp.877-897, 2011.
Sandholm, W. H.: Population Games and Evolutionary Dynamics, MIT Press, 2010.
Soland, R. M.: Optimal facility location with concave costs, Operations research, Vol.22, No.2, pp.373-382, 1974.
慶田收: 完全ポテンシャルゲームとしての正規形ゲームと混雑ゲームの性質, 熊本学園大学経済論集, Vol.21, pp.129-144, 2015.
Alós-Ferrer, C. and Netzer, N.: The logit-response dynamics, Games and economic behavior, Vol.68, No.2, pp.413-427, 2010.
Zangwill, W. I.: Minimum concave cost flows in certain networks, Management science, Vol.14, No.7, pp.429-450, 1968.
Gallo, G. and Sodini, C.: Concave cost minimization on networks, European journal of operational research, Vol.3, No.3, pp.239-249, 1979.
Gallo, G., Sandi, C. and Sodini, C.: An algorithm for the min concave cost flow problem, European journal of operational research, Vol.4, No.4, pp.248-255, 1980.
Guisewite, G. M. and Pardalos, P. M.: Global search algorithms for minimum concave-cost network flow problems, Journal of Global Optimization, Vol.1, No.4,
pp.309-330, 1991.
Guisewite, G. M. and Pardalos, P. M.: Minimum concave-cost network flow problems: Applications, complexity, and algorithms, Annals of Operations Research, Vol.25, No.1, pp.75-99, 1990.
Monteiro, M. S. R., Fontes, D. and Fontes, F.: Solving concave network flow problems, 2012.
Monteiro, M. S. R., Fontes, D. B. M. M. and Fontes, F. A. C. C.: Concave minimum cost network flow problems solved with a colony of ants, Journal of Heuristics, Vol.19, No.1, pp.1-33, 2013.
Fontes, D. B. M. M., Hadjiconstantinou, E. and Christofides, N.: A dynamic programming approach for solving single-source uncapacitated concave minimum cost network flow problems, European journal of operational research, Vol.174, No.2, pp.1205-1219, 2006.
Fontes, D. B. M. M., Hadjiconstantinou, E. and Christofides, N.: A branch-and-bound algorithm for concave network flow problems, Journal of Global Optimization, Vol.34, No.1, pp.127-155, 2006.
Fontes, D. B. M. M. and Gonçalves, J. F.: Heuristic solutions for general concave minimum cost network flow problems, Networks. An International Journal, Vol.50,
No.1, pp.67-76, 2007.
Dijkstra: A note on two problems in connexion with graphs, Numerische Mathematik, 1959.
大澤実: 集積経済モデルの数理解析とその周辺, 土木学会論文集 D3(土木計画学), Vol.74, No.5, pp.I_19-I_36, 2018.
ダウンロード
公開済
投稿日時: 2024-06-07 15:01:03 UTC
公開日時: 2024-06-10 09:20:57 UTC
ライセンス
Copyright(c)2024
酒井, 高良
高山, 雄貴
この作品は、Creative Commons Attribution-NonCommercial 4.0 International Licenseの下でライセンスされています。