プレプリント / バージョン1

Exploration of novel metabolic features reflecting statin sensitivity in lung cancer cells

##article.authors##

  • Tashiro, Jiro Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori university https://orcid.org/0009-0002-6874-0796
  • Warita, Tomoko Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
  • Sugiura, Akihiro Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University
  • Mizoguchi, Kana Graduate School of Science and Technology, Kwansei Gakuin University
  • Ishikawa, Takuro Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University
  • Warita, Katsuhiko Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University

DOI:

https://doi.org/10.51094/jxiv.716

キーワード:

Cancer、 Statin-sensitivity、 CoA、 Cholesterol、 PANK2、 SOAT1

抄録

Statins are cholesterol-lowering drugs often used for the treatment of dyslipidemia. Statins also exert anticancer effects by inhibiting hydroxymethylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis. We previously reported that the susceptibility to statin treatment differs among cancer cells and that functional E-cadherin expression on the plasma membrane could be a biomarker of statin sensitivity in cancer cells. However, the detailed qualitative and molecular differences between statin-sensitive and statin-resistant cancer cells remain unclear. Here, we explored novel parameters related to statin sensitivity by comparing gene expression profiles and metabolite contents between statin-sensitive and statin-resistant lung cancer cell lines. We found that the expression of most cholesterol synthesis genes was lower in the statin-sensitive cancer cell line, HOP-92, than in the statin-resistant cancer cell line, NCI-H322M. Moreover, HOP-92 cells originally exhibited lower levels of CoA and HMG-CoA. Additionally, atorvastatin decreased the expression of PANK2, a rate-limiting enzyme in CoA synthesis. Atorvastatin also reduced the mRNA levels of the cholesterol esterification enzyme SOAT1, which was consistent with a decrease in the ratio of cholesterol ester to total cholesterol in HOP-92 cells. Our data suggest that the mevalonate pathway flow and CoA content may be limited in statin-sensitive cancer cells. We also suggest that CoA synthesis and cholesterol storage fluctuate with atorvastatin treatment in statin-sensitive cancer cells.

利益相反に関する開示

The authors declare no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Elis A. Current and future options in cholesterol lowering treatments. Eur. J. Intern. Med., 112, 1–5 (2023).

Michaeli DT, Michaeli JC, Albers S, Boch T, Michaeli T. Established and Emerging Lipid‑Lowering Drugs for Primary and Secondary Cardiovascular Prevention. Am. J. Cardiovasc. Drugs, 23, 477–495 (2023).

Jiang P, Mukthavaram R, ChaoY, Nomura N, Bharati IS, Fogal V, Pastorino S, Teng D, Cong X, Pingle SC, Kapoor S, Shetty K, Aggrawal A, Vali S, Abbasi T, Chien S, Kesari S. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br. J. Cancer, 111, 1562–1571 (2014).

Alizadeh J, Zeki AA, Mirzaei N, Tewary S, Moghadam AR, Glogowska A, Nagakannan P, Eftekharpour E, Wiechec E, Gordon JW, Xu FY, Field JT, Yoneda KY, Kenyon NJ, Hashemi M, Hatch GM, Hombach-Klonisch S, Klonisch T, Ghavami S. Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells. Sci. Rep., 7, 44841 (2017).

Chen MC, Tsai YC, Tseng JH, Liou JJ, Horng S, Wen HC, Fan YC, Zhong WB, Hsu SP. Simvastatin Inhibits Cell Proliferation and Migration in Human Anaplastic Thyroid Cancer. Int. J. Mol. Sci., 18, 2690 (2017).

Ishikawa T, Hosaka YZ, Beckwitt C, Wells A, Oltvai ZN, Warita K. Concomitant attenuation of HMG-CoA reductase expression potentiates the cancer cell growth-inhibitory effect of statins and expands their efficacy in tumor cells with epithelial characteristics. Oncotarget, 9, 29304–29315 (2018).

Jiao Z, Cai H, Long Y, Sirka OK, Padmanaban V, Ewald AJ, Devreotes PN. Statin-induced GGPP depletion blocks macropinocytosis and starves cells with oncogenic defects. Proc. Natl. Acad. Sci. U. S. A., 117, 4158–4168 (2020).

Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, Oltvai ZN. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Sci. Rep., 4, 7593 (2014).

Raghu VK, Beckwitt CH, Warita K, Wells A, Benos PV, Oltvai ZN. Biomarker identification for statin sensitivity of cancer cell lines. Biochem. Biophys. Res. Commun., 495, 659–665 (2018).

Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front. Oncol., 11, 626971 (2021).

Casella C, Miller DH, Lynch K, Brodsky AS. Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol. Oncol., 135, 333–341 (2014)

Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutarylCoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis., 10, 91 (2019).

Longo J, Mullen PJ, Yu R, van Leeuwen JE, Masoomian M, Woon DTS, Wang Y, Chen EX, Hamilton RJ, Sweet JM, van der Kwast TH, Fleshner NE, Penn LZ. An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer. Mol. Metab., 25, 119–130 (2019).

Clendening JW, Pandyra A, Li Z, Boutros PC, Martirosyan A, Lehner R, Jurisica I, Trudel S, Penn LZ. Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma. Blood, 115, 4787–4797 (2010).

Kimbung S, Lettiero B, Feldt M, Bosch A, Borgquist S. High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer. Oncotarget, 7, 59640–59651 (2016).

Warita K, Ishikawa T, Sugiura A, Tashiro J, Shimakura H, Hosaka YZ, Ohta KI, Warita T, Oltvai ZN. Concomitant attenuation of HMGCR expression and activity enhances the growth inhibitory effect of atorvastatin on TGF‑β‑treated epithelial cancer cells. Sci. Rep., 11, 12763 (2021).

van Leeuwen JE, Ba-Alawi W, Branchard E, Cruickshank J, Schormann W, Longo J, Silvester J, Gross PL, Andrews DW, Cescon DW, Haibe-Kains B, Penn LZ, Gendoo DMA. Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins. Nat. Commun., 13, 6323 (2022)

Irie N, Mizoguchi K, Warita T, Nakano M, Sasaki K, Tashiro J, Osaki T, Ishikawa T, Oltvai ZN, Warita K. Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin–Dipyridamole Combination Treatment in Melanoma Cell Lines. Biomedicines, 12, 698 (2024).

Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, Stelmnka E. The Pathophysiological Role of CoA. Int. J. Mol. Sci., 21, 9057 (2020)

Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front. Oncol., 12, 906670 (2022).

Bauer R, Brüne B, Schmid T. Cholesterol metabolism in the regulation of inflammatory responses. Front. Pharmacol., 14, 1121819 (2023).

Tu T, Zhang H, Xu H. Targeting sterol-O-acyltransferase 1 to disrupt cholesterol metabolism for cancer therapy. Front. Oncol., 13, 1197502 (2023).

Warita T, Irie N, Zhou Y, Tashiro J, Sugiura A, Oltvai ZN, Warita K. Alterations in the omics profiles in mevalonate pathway-inhibited cancer cells. Life Sci., 312, 121249 (2023).

Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, Tomita M, Soga T. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst., 4, 135–147 (2008).

Ooga T, Sato H, Nagashima A, Sasaki K, Tomita M, Soga T, Ohashi Y. Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia. Mol. Biosyst., 7, 1217–1223 (2011).

Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia, 15, 1398–1407 (2001).

Wang T, Seah S, Loh X, Chan CW, Hartman M, Goh BC, Lee SC. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget, 7, 2532–2544 (2016).

Kany S, Woschek M, Kneip N, Sturm R, Kalbitz M, Hanschen M, Relja B. Simvastatin exerts anticancer effects in osteosarcoma cell lines via geranylgeranylation and c-Jun activation. Int. J. Oncol., 52, 1285–1294 (2018).

Wasko BM, Smits JP, Shull LW, Wiemer DF, Hohl RJ. A novel bisphosphonate inhibitor of squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro. J. Lipid Res., 52, 1957–1964 (2011).

Suzuki N, Ito T, Matsui H, Takizawa M. Anti‑inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK‑475 active metabolite‑I, in immune cells simulating mevalonate kinase deficiency (MKD)‑like condition. Springerplus, 5, 1429 (2016).

Xu B, Muramatsu T, Inazawa J. Suppression of MET Signaling Mediated by Pitavastatin and Capmatinib Inhibits Oral and Esophageal Cancer Cell Growth. Mol. Cancer Res., 19, 585–597 (2021).

Istvan ES. Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am. Heart J., 144, S27–32 (2002).

Harrad LE, Bourais I, Mohammadi H, Amine A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors, 18, 164 (2018).

Chen Q, Guo Q, Wang D, Zhu S, Wu D, Wang Z, Lu Y. Diagnosis and prognosis of pancreatic cancer with immunoglobulin heavy constant delta blood marker. J. Cancer Res. Clin. Oncol., 149, 12977–12992 (2023).

Poli M, Derosas M, Luscieti S, Cavadini P, Campanella A, Verardi R, Finazzi D, Arosio P. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol. Dis., 39, 204–210 (2010).

Liu Y, Cheng Z, Li Q, Pang Y, Cui L, Qian T, Quan L, Dai Y, Jiao Y, Zhang Z, Ye X, Shi J, Fu L. Prognostic significance of the PANK family expression in acute myeloid leukemia. Ann. Transl. Med., 7, 261 (2019).

Santos DZD, Guimaraes IDS, Hakeem-Sanni MF, Cochran BJ, Rye KA, Grewal T, Hoy AJ, Rangel LBA. Atorvastatin improves cisplatin sensitivity through modulation of cholesteryl ester homeostasis in breast cancer cells. Discov. Oncol., 13, 135 (2022).

Zhu T, Wang Z, Zou T, Xu L, Zhang S, Chen Y, Chen C, Zhang W, Wang S, Ding Q, Xu G. SOAT1 Promotes Gastric Cancer Lymph Node Metastasis Through Lipid Synthesis. Front. Pharmacol., 12, 769647 (2021).

公開済


投稿日時: 2024-05-14 15:19:38 UTC

公開日時: 2024-05-16 02:56:51 UTC
研究分野
生物学・生命科学・基礎医学