プレプリント / バージョン1

Size-segregated sulfate on top of Mt. Fuji transported from Sakurajima volcano eruption

##article.authors##

  • Shimada, Kojiro University of the ryukyus, Department of Chemistry, Biology, and Marine Science https://orcid.org/0000-0002-7424-8792 https://researchmap.jp/7000019703
  • Suzuki, Kei Tokyo University of Agriculture and Technology Faculty of Agriculture
  • Kato, Shungo Tokyo Metropolitan University Faculty of Urban Environmental Sciences
  • Itahashi, Shuuichi Kyushu University Research Institute for Applied Mechanics
  • Hatakeyama, Shiro Tokyo University of Agriculture and Technology Faculty of Agriculture

DOI:

https://doi.org/10.51094/jxiv.696

キーワード:

Size-segregated aerosol、 Size distribution of sulfate、 Mt. Fuji、 East Asia、 Sakurajima volcano eruption

抄録

Size-segregated aerosol samples were collected on Mt. Fuji with a cascade impactor during daytime and nighttime. We analyzed for their ionic and element compositions. Samples were collected from 29 July to 2 August (first period) and from 19 to 21 August 2013 (second period). Based on combined chemical components and CMAQ, in the first period, the air masses had been transported from East Asia. In the second period, the Sakurajima volcano eruption had been transported. NH4+, SO42–and elements were the major ions in 2.5 < Dp ≤ 10 during the second period. The slope of a linear regression of non-sea-salt (nss)-SO42– versus NH4+ was nearly unity, particularly during the first period. However, nss-SO42– in coarse aerosol was shifted in great excess in the second period. We have observed a rare phenomenon in which sulfate shifts to 2.5 < Dp ≤ 10. Although the formation process of (NH4)2SO4 in coarse particle is hypothesized two mechanisms, we hypothesize the third mechanism in this study. Currently, radiative forcing is being discussed for the detection of volcanic aerosols using satellites with particle sizes of 1.2 µm. If this can be clarified, it will improve the reproducibility of sulfate radiative forcing.

利益相反に関する開示

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T., Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S. J., Suchyta, H., Muntean, M., Solazzo, E., Banja, M., Schaaf, E., Pagani, F., Woo, J. H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J., Niemi, D., Sassi, M., Ansari, T., Foley, K.: The HTAP_v3 emission mosaic: merging regional and global monthly emissions (2000-2018) to support air quality modeling and policies, Earth Syst. Sci. Data, 15, 2667–2694, doi:10.5194/essd-15-2667-2023 (2023).Gao, Y., Nelson, D.E., Field, P.M., Ding, Q., Li, H., Sherrell, R.M., Gigliotti, C.L., Ryda, V., Glenn, T.R. Eisenreich, S.J.: Characterization of Atmospheric Trace Elements on PM2.5 Particulate Matter over the New York–New Jersey Harbor Estuary. Atmos. Environ., 36: 1077–1086, doi: 10.1016/S1352-2310(01) 00381-8, (2002).

Goran, F., Bengt, G. M., Sven-Inge, C., Olle, H. B., Erik, S., Manfred, W., Brett, Y., Jost, H., Alfred, W., Douglas, O., Frank, S., Paolo, L., Loretta, R.: Droplet Formation and Growth in Polluted Fogs, Contr. Atmos. Phys., 71 (1), 65-85 (1998).

Itahashi, S., Uchida, R., Yamaji, K., Chatani, S.: Year-round modeling of sulfate aerosol over Asia through updates of aqueous-phase oxidation and gas-phase reactions with stabilized Criegee intermediates, Atmos. Environ. X, 12, 100123, doi:10.1016/j.aeaoa.2021.100123 (2021).

Itahashi, S., Hattori, S., Ito, A., Sadanaga, Y., Yoshida, N., Matsuki, A.: Role of dust and iron solubility in sulfate formation during the long-range transport in East Asia evidenced by 17O-excess signatures, Environ. Sci. Tech., 56, 13634–13643, doi: 10.1021/acs.est.2c03574 (2022).

Itahashi, S. Hatakeyama, S., Shimada, K., Takami, A.: Sources of high sulfate aerosol concentration observed at Cape Hedo in spring 2021, Aerosol and Air Quality Research, 19, 587–600, doi:10.4209/aaqr.2018.09.0350 (2019).

Itahashi, S., Kim, N. K., Kim, Y. P., Song, M., Kim, C. H., Jang, K. S., Lee, K. Y., Shin, H. J., Ahn, J. Y., Jung, J. S., Wu, Z., Lee, J. Y., Sadanaga, Y., Kato, S., Tang, N.,

Matsuki, A.: Distinctive features of inorganic PM1.0 components during winter pollution events over the upwind and downwind regions in Northeast Asia. Atmos. Environ., 309, 119943 (2023).

Japan Meteorological Agency: Activity status of each volcano, http://www.data.jma.go.jp/svd/vois/data/tokyo/volcano.html (accessed 9 January 2024) (in Japanese)

Kajino, M., Hagino, H., Fujitani, Y., Morikawa, T., Fukui, T., Onishi, K., Okuda, T., Kajikawa, T., Igarashi Y.: Modeling transition metals in East Asia and Japan and its emission sources, GeoHealth, 4, e2020GH000259, doi:10.1029/2020GH000259, (2020).

Kaneyasu, N., Igarashi, Y., Sawa, Y., Takahashi, H., Takada, H., Kumata, H., Hoeller, R.: Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. J. Geophys. Res., 112 (D13) (2007).

Kato, S., Shiobara, Y., Uchiyama, K., Miura, K., Okochi, H., Kobayashi, H., Hatakeyama, S.: Atmospheric CO, O3, and SO2 Measurements at the Summit of Mt. Fuji during the Summer of 2013, Aerosol Air Qual. Res., 16 (10), 2368-2377 (2016).

Kevin, J. N., John, A. O., Anneli, H.: Elemental composition of fog interstitial particle size fractions and hydrophobic fractions related to fog droplet nucleation scavenging, Tellus, 44B, 593-603 (1992).

Kocak, M., Mihalopoulos, N., and Kubilay, N.: Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean, Atmos. Environ., 41, 7351–7368. doi:10.1016/j.atmosenv.2007.05.011 (2007).

Li, J., Posfai, M., Hobbs, P.V. and Buseck, P. R.: Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles, J. Geophys. Res., 108, 8484 (2003).

Miura, K., Shimada, K., Sugiyama, T., Sato, K., Takami, A., Chan, C.K., Kim, I.S., Kim, Y. P., Lin, N.-H., Hatakeyama, S., 2019. Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Sci. Rep. 9, 12591.

Naoe, H., Heintzenberg, J., Okada, K., Zaizen, Y., Hayashi, K., Tateishi, T., Igarashi, Y., Dokiya, Y., Kinoshita, K.: Composition and size distribution of submicrometer aerosol particles observed on Mt. Fuji in the volcanic plumes from Miyakejima. Atmos. Environ., 37 (22), 3047-3055 (2003).

Okamoto, S., Tanimoto, H.: A review of atmospheric chemistry observations at mountain sites. Prog. Earth Planet. Sci.,, 3 (1), 34 (2016).

Okuda, T., Nakao, S., Tanaka, S., Shen, Z., He, K., Ma, Y., Lei, Y., Jia, Y.: Characterization of water-soluble ionic composition of aerosols in Xi'an and Beijing, China. Chikyukagaku (Geochemistry), 41, 113-123. (in Japanese with English abstract) (2007).

Osada, K., Ohara, T., Uno, I., Kido, M., Iida, H.: Impact of Chinese anthropogenic emissions on submicrometer aerosol concentration at Mt. Tateyama, Japan. Atmos. Chem. Phys., 9 (23), 9111-9120 (2009).

Otani, Y., Eryu, K., Furuuchi, M., Tajima, N., & Tekasakul, P.: Inertial classification of nanoparticles with fibrous filters. Aerosol and Air Qual. Res, 7, 343-352 (2007).

Parmar, R. S., Satsangi, G. S., Kumari, M., Lakhani, A., Srivastava, S. S., Prakash, S.: Study of size distribution of atmospheric aerosol at Agra, Atmos. Environ., 35, 693–702. doi:10.1016/S1352-2310(00)00317-4 (2001).

Shimada, K., Geka, Y., Kato, S., Chan, C. K., Kim, Y. P., Ou-Yang, C. F., Lin, N-H., Hatakeyama, S.: Possibility of condensation of nitric acid for cloud condensation nucleus in the summer at Mt. Fuji, Atmos. Pollut. Res., 15(1), 101940 (2024).

Shimada, K., Mizukoshi, M., Chan, C. K., Kim, Y. P., Lin, N. H., Matsuda, K., Itahashi, S., Yoshihiro Nakashima, Hatakeyama, S.: Disentangling the contribution of the transboundary out-flow from the Asian continent to Tokyo, Japan, Environ. Pollut, 286, 117280 (2021).

Shimada, K., Shimada, M., Takami, A., Hasegawa, S., Fushimi, A., Arakaki, T., Watanabe, I., Hatakeyama, S.: Mode and Place of Origin of Carbonaceous Aerosols Transported From East Asia to Cape Hedo, Okinawa, Japan, Aerosol and Air Qual. Res, 15, 799-813 (2015).

Suzuki, I., Igarashi, Y., Dokiya, Y., Akagi, T.: Two extreme types of mixing of dust with urban aerosols observed in Kosa particles: ‘after’ mixing and ‘on-the-way’ mixing. Atmos. Environ., 44 (6), 858-866 (2010).

Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96, 2059-2077, (2015). http://dx.doi.org/10.1175/BAMS-D-14-00110.1

Takami, A., Miyoshi, T., Shimono, A., Kaneyasu, N., Kato, S., Kajii, Y., Hatakeyama, S.: Transport of anthropogenic aerosols from Asia and subsequent chemical transformation, J. Geophys. Res., 112, D22S31. doi:10.1029/2006JD008120 (2007).

Taniguchi, Y., Shimada, K., Takami, A., Lin, N. H., Chan, C. K., Kim, Y. P., Hatakeyama, S.: Transboundary and local air pollutants in western Japan distinguished on the basis of ratios of metallic elements in size-segregated aerosols, Aerosol and Air Qual. Res, 17, 3141-3150. (2017).

Taylor, S. R., Mclennan, S. M.: The Geochemical Evolution of the Continental Crust. Rev Geophys., 33, 241-265 (1995).

U.S. Environmental Protection Agency: CMAQ (Version 5.3.3), https://doi.org/10.5281/zenodo.5213949 (2021) (accessed 9 January 2024).

Wai, K. M., Lin, N. H., Wang, S. H., Dokiya, Y.: Rainwater chemistry at a high‐altitude station, Mt. Lulin, Taiwan: Comparison with a background station, Mt. Fuji. J. Geophys. Res.,113 (D6) (2008).

Xiaoxiu, L., Xiaoshan, Z., Yujing, M., Anpu, N., Guibin, J.: Size fractionated speciation of sulfate and nitrate in airborne particulates in Beijing, China, Atmos. Environ., 37, 2581–2588. doi:10.1016/S1352-2310(03)00220-6 (2003).

Xie, Y., Paulot, F., Carter, W. P. L., Nolte, C. G., Luecken, D. J., Hutzell, W. T., Wennberg, P. O., Cohen, R. C., and Pinder, R. W.: Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality, Atmos. Chem. Phys., 13, 8439–8455, doi:10.5194/acp-13-8439-2013 (2013).

Xu, L., Pye, H. O. T., He, J., Chen, Y., Murphy, B. N., and Ng, N. L.: Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States, Atmos. Chem. Phys., 18, 12613–12637, doi:10.5194/acp-18-12613-2018 (2018).

Yeatman, S., Spokes, L., Jickells, T.: Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites, Atmos. Environ., 35, 1321–1335. doi:10.1016/S1352-2310(00)00452-0 (2001).

Yumoto, Y., Shimada, K., Araki, Y., Yoshino, A., Takami, A., Hatakayema, S.: Size-segregated Chemical Analyses of Particles Transported from East Asia to Cape Hedo, Okinawa and Their Transformation Mechanisms during the Transport, Earozoru Kenkyu, 30, 115-125 (2015). (in Japanese with English Abstract).

Zhuang, H., Chan, C. K., Fang, M., Wexler, A. S.: Formation of nitrate and non-sea-salt sulfate on coarse particles, Atmos. Environ., 33, 4223–4233. doi:10.1016/S1352-2310(99)00186-7 (1999).

公開済


投稿日時: 2024-05-02 02:16:38 UTC

公開日時: 2024-05-10 06:22:23 UTC
研究分野
環境学