プレプリント / バージョン1

Sleep and quiet wakefulness signify an idling brain hub for creative insights

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.671

キーワード:

Memory、 Engram、 Sleep、 Idling brain、 Reactivation、 Inference

抄録

Long-term potentiation of synaptic strength is a fundamental aspect of learning and memory. Memories are believed to be stored within specific populations of neurons known as engram cells, which are subsequently reactivated during sleep, facilitating the consolidation of stored information. However, sleep and offline reactivations are associated not only with past experiences but also with anticipation of future events. During periods of offline reactivation, which occur during sleep and quiet wakefulness, the brain exhibits a capability to form novel connections. This process links various past experiences, often leading to the emergence of qualitatively new information that was not initially available. Brain activity during sleep and quiet wakefulness is referred to as the "idling brain". Idling brain activity is believed to play a pivotal role in abstracting essential information, comprehending underlying rules, generating creative ideas, and fostering insightful thoughts. In this review, we will explore the current state of research and future directions in understanding how sleep and idling brain activity are interconnected with various cognitive functions, especially creative insights. These insights have profound implications for our daily lives, influencing our ability to process information, make decisions, and navigate complex situations effectively.

利益相反に関する開示

The authors declare no conflict of interest (COI)

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Bliss, T. V. P. & Lømo, T. 1973 Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology 232, 331-356. (DOI:https://doi.org/10.1113/jphysiol.1973.sp010273).

Hebb, D. O. 1949 The organization of behavior : a neuropsychological theory / D.O. Hebb. New York, Wiley.

Semon, R. W. 1904 Die Mneme als erhaltendes Prinzip im Wechsel des organischen Geschehens. Leipzig, Wilhelm Engelmann.

Josselyn, S. A. & Tonegawa, S. 2020 Memory engrams: Recalling the past and imagining the future. Science 367, eaaw4325. (DOI:doi:10.1126/science.aaw4325).

Nambu, M. F., Lin, Y.-J., Reuschenbach, J. & Tanaka, K. Z. 2022 What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Current Opinion in Neurobiology 75, 102568. (DOI:https://doi.org/10.1016/j.conb.2022.102568).

Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. 2009 Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience 12, 1222-1223. (DOI:10.1038/nn.2384).

Joo, H. R. & Frank, L. M. 2018 The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation. Nature Reviews Neuroscience 19, 744-757. (DOI:10.1038/s41583-018-0077-1).

Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. 2015 Memory Engram Cells Have Come of Age. Neuron 87, 918-931. (DOI:https://doi.org/10.1016/j.neuron.2015.08.002).

Asai, H., Ohkawa, N., Saitoh, Y., Ghandour, K., Murayama, E., Nishizono, H., Matsuo, M., Hirayama, T., Kaneko, R., Muramatsu, S.-i., et al. 2020 Pcdhβ deficiency affects hippocampal CA1 ensemble activity and contextual fear discrimination. Molecular Brain 13, 7. (DOI:10.1186/s13041-020-0547-z).

Buzsáki, G. & Fernández-Ruiz, A. 2019 Utility of the Idling Brain: Abstraction of New Knowledge. Cell 178, 513-515. (DOI:https://doi.org/10.1016/j.cell.2019.07.004).

Buzsáki, G. 1989 Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience 31, 551-570. (DOI:https://doi.org/10.1016/0306-4522(89)90423-5).

Pavlides, C. & Winson, J. 1989 Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience 9, 2907-2918. (DOI:10.1523/jneurosci.09-08-02907.1989).

Wilson, M. A. & McNaughton, B. L. 1994 Reactivation of Hippocampal Ensemble Memories During Sleep. Science 265, 676-679. (DOI:doi:10.1126/science.8036517).

Skaggs, W. E. & McNaughton, B. L. 1996 Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience. Science 271, 1870-1873. (DOI:doi:10.1126/science.271.5257.1870).

Lee, A. K. & Wilson, M. A. 2002 Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep. Neuron 36, 1183-1194. (DOI:https://doi.org/10.1016/S0896-6273(02)01096-6).

Louie, K. & Wilson, M. A. 2001 Temporally Structured Replay of Awake Hippocampal Ensemble Activity during Rapid Eye Movement Sleep. Neuron 29, 145-156. (DOI:https://doi.org/10.1016/S0896-6273(01)00186-6).

Euston, D. R., Tatsuno, M. & McNaughton, B. L. 2007 Fast-Forward Playback of Recent Memory Sequences in Prefrontal Cortex During Sleep. Science 318, 1147-1150. (DOI:doi:10.1126/science.1148979).

Gottselig, J. M., Hofer-Tinguely, G., Borbély, A. A., Regel, S. J., Landolt, H. P., Rétey, J. V. & Achermann, P. 2004 Sleep and rest facilitate auditory learning. Neuroscience 127, 557-561. (DOI:https://doi.org/10.1016/j.neuroscience.2004.05.053).

Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. 2016 Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812-816. (DOI:doi:10.1126/science.aad5252).

Diba, K. & Buzsáki, G. 2007 Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience 10, 1241-1242. (DOI:10.1038/nn1961).

Jiang, X., Gonzalez-Martinez, J. & Halgren, E. 2019 Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates. The Journal of Neuroscience 39, 8744-8761. (DOI:10.1523/jneurosci.2857-18.2019).

Norimoto, H., Makino, K., Gao, M., Shikano, Y., Okamoto, K., Ishikawa, T., Sasaki, T., Hioki, H., Fujisawa, S. & Ikegaya, Y. 2018 Hippocampal ripples down-regulate synapses. Science 359, 1524-1527. (DOI:doi:10.1126/science.aao0702).

van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K. & Dupret, D. 2016 Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples. Neuron 92, 968-974. (DOI:https://doi.org/10.1016/j.neuron.2016.10.020).

Miyamoto, D., Hirai, D., Fung, C. C. A., Inutsuka, A., Odagawa, M., Suzuki, T., Boehringer, R., Adaikkan, C., Matsubara, C., Matsuki, N., et al. 2016 Top-down cortical input during NREM sleep consolidates perceptual memory. Science 352, 1315-1318. (DOI:doi:10.1126/science.aaf0902).

Ohkawa, N. & Ghandour, K. 2022 Miniature Microscopy of Hippocampal CA1 to Identify Engram Cells and Record Calcium Transients for Analyses of Ensemble Activities. In Behavioral Neurogenetics (ed. D. Yamamoto), pp. 157-174. New York, NY, Springer US.

Ghandour, K., Ohkawa, N., Fung, C. C. A., Asai, H., Saitoh, Y., Takekawa, T., Okubo-Suzuki, R., Soya, S., Nishizono, H., Matsuo, M., et al. 2019 Orchestrated ensemble activities constitute a hippocampal memory engram. Nat Commun 10, 2637. (DOI:10.1038/s41467-019-10683-2).

Wally, M. E., Nomoto, M., Abdou, K., Murayama, E. & Inokuchi, K. 2022 A short-term memory trace persists for days in the mouse hippocampus. Communications Biology 5, 1168. (DOI:10.1038/s42003-022-04167-1).

Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. 2001 Sleep, Learning, and Dreams: Off-line Memory Reprocessing. Science 294, 1052-1057. (DOI:doi:10.1126/science.1063530).

Breger, L. 1967 Function of dreams. Journal of Abnormal Psychology 72, 1-28. (DOI:10.1037/h0025040).

Ritter, S. M. & Mostert, N. 2017 Enhancement of Creative Thinking Skills Using a Cognitive-Based Creativity Training. Journal of Cognitive Enhancement 1, 243-253. (DOI:10.1007/s41465-016-0002-3).

Barrett, D. 2017 Dreams and creative problem-solving. Annals of the New York Academy of Sciences 1406, 64-67. (DOI:https://doi.org/10.1111/nyas.13412).

Schredl, M. & Erlacher, D. 2007 Self-Reported Effects of Dreams on Waking-Life Creativity: An Empirical Study. The Journal of Psychology 141, 35-46. (DOI:10.3200/JRLP.141.1.35-46).

Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. 2004 Sleep inspires insight. Nature 427, 352-355. (DOI:10.1038/nature02223).

Aserinsky, E. & Kleitman, N. 1953 Regularly Occurring Periods of Eye Motility, and Concomitant Phenomena, During Sleep. Science 118, 273-274. (DOI:doi:10.1126/science.118.3062.273).

Senzai, Y. & Scanziani, M. 2022 A cognitive process occurring during sleep is revealed by rapid eye movements. Science 377, 999-1004. (DOI:doi:10.1126/science.abp8852).

Djonlagic, I., Rosenfeld, A., Shohamy, D., Myers, C., Gluck, M. & Stickgold, R. 2009 Sleep enhances category learning. Learning & Memory 16, 751-755. (DOI:10.1101/lm.1634509).

Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C. & Mednick, S. C. 2009 REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences 106, 10130-10134. (DOI:doi:10.1073/pnas.0900271106).

Walker, M. P., Liston, C., Hobson, J. A. & Stickgold, R. 2002 Cognitive flexibility across the sleep–wake cycle: REM-sleep enhancement of anagram problem solving. Cognitive Brain Research 14, 317-324. (DOI:https://doi.org/10.1016/S0926-6410(02)00134-9).

Bowden, E. M., Jung-Beeman, M., Fleck, J. & Kounios, J. 2005 New approaches to demystifying insight. Trends in Cognitive Sciences 9, 322-328. (DOI:https://doi.org/10.1016/j.tics.2005.05.012).

Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J. & Kounios, J. 2004 Neural Activity When People Solve Verbal Problems with Insight. PLOS Biology 2, e97. (DOI:10.1371/journal.pbio.0020097).

Van Dongen, P. A., Baynard, M. D., Maislin, G. & Dinges, D. F. 2004 Systematic Interindividual Differences in Neurobehavioral Impairment from Sleep Loss: Evidence of Trait-Like Differential Vulnerability. Sleep 27, 423-433. (DOI:10.1093/sleep/27.3.423).

Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M. & Jung-Beeman, M. 2008 The origins of insight in resting-state brain activity. Neuropsychologia 46, 281-291. (DOI:https://doi.org/10.1016/j.neuropsychologia.2007.07.013).

Ansburg, P. I. & Hill, K. 2003 Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences 34, 1141-1152. (DOI:https://doi.org/10.1016/S0191-8869(02)00104-6).

Tadros, T. & Bazhenov, M. 2022 Role of Sleep in Formation of Relational Associative Memory. The Journal of Neuroscience 42, 5330-5345. (DOI:10.1523/jneurosci.2044-21.2022).

Barron, H. C., Reeve, H. M., Koolschijn, R. S., Perestenko, P. V., Shpektor, A., Nili, H., Rothaermel, R., Campo-Urriza, N., O’Reilly, J. X., Bannerman, D. M., et al. 2020 Neuronal Computation Underlying Inferential Reasoning in Humans and Mice. Cell 183, 228-243.e221. (DOI:https://doi.org/10.1016/j.cell.2020.08.035).

Abdou, K., Aly, M. H., Ibrahim, A. Z., Choko, K., Nomoto, M., Okubo-Suzuki, R., Muramatsu, S.-i. & Inokuchi, K. 2023 Prefrontal coding of learned and inferred knowledge during REM & NREM sleep. bioRxiv, 2021.2004.2008.439095. (DOI:10.1101/2021.04.08.439095).

Lewis, P. A., Knoblich, G. & Poe, G. 2018 How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends in Cognitive Sciences 22, 491-503. (DOI:https://doi.org/10.1016/j.tics.2018.03.009).

Heald, J. B., Lengyel, M. & Wolpert, D. M. 2023 Contextual inference in learning and memory. Trends in Cognitive Sciences 27, 43-64. (DOI:https://doi.org/10.1016/j.tics.2022.10.004).

Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., Bito, H. & Morris, R. G. M. 2011 Schema-Dependent Gene Activation and Memory Encoding in Neocortex. Science 333, 891-895. (DOI:doi:10.1126/science.1205274).

Wang, S.-H., Tse, D. & Morris, R. G. M. 2012 Anterior cingulate cortex in schema assimilation and expression. Learning & Memory 19, 315-318. (DOI:10.1101/lm.026336.112).

Jakke, T., Jessica, D. P., Robert, S., Erin, J. W. & Gaskell, M. G. 2010 Sleep Spindle Activity is Associated with the Integration of New Memories and Existing Knowledge. The Journal of Neuroscience 30, 14356. (DOI:10.1523/JNEUROSCI.3028-10.2010).

Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. 2019 Human Replay Spontaneously Reorganizes Experience. Cell 178, 640-652.e614. (DOI:https://doi.org/10.1016/j.cell.2019.06.012).

Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O'Keefe, J. 2005 Attractor Dynamics in the Hippocampal Representation of the Local Environment. Science 308, 873-876. (DOI:doi:10.1126/science.1108905).

Aly, M. H., Abdou, K., Okubo-Suzuki, R., Nomoto, M. & Inokuchi, K. 2022 Selective engram coreactivation in idling brain inspires implicit learning. Proceedings of the National Academy of Sciences 119, e2201578119. (DOI:doi:10.1073/pnas.2201578119).

ダウンロード

公開済


投稿日時: 2024-04-18 06:45:17 UTC

公開日時: 2024-04-30 23:21:19 UTC
研究分野
生物学・生命科学・基礎医学