Within-study covariance estimators for network meta-analysis with contrast-based approach
DOI:
https://doi.org/10.51094/jxiv.490キーワード:
network meta-analysis、 contrast-based approach、 multivariate random-effects model、 within-study covariance matrix、 network meta-regression抄録
The contrast-based approach is one of the primary approaches in network meta-analysis. For statistical modeling in network meta-analysis and meta-regression models, within-study covariance estimates are needed to adequately address the correlations among the multivariate outcomes. In this computational note, we present the formulas of covariance estimators for standard effect measures used in modern meta-analysis practice: risk difference, risk ratio, odds ratio, mean difference, and standardized mean difference (Cohen's d and Hedge's g).
利益相反に関する開示
The authors have no conflict interest to declare.ダウンロード *前日までの集計結果を表示します
引用文献
DerSimonian, R., and Laird, N. M. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177-188.
Greenland, S. (1987). Interpretation and choice of effect measures in epidemiologic analysis. American Journal of Epidemiology 125, 761-768.
Hedges, L. V. (1981). Distributional theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics 6, 107-128.
Hedges, L. V., and Olkins, I. (1985). Statistical Methods for Meta-Analysis. New York: Academic Press.
Higgins, J. P. T., and Thomas, J. (2019). Cochrane Handbook for Systematic Reviews of Interventions, 2nd edition. Chichester: Wiley-Blackwell.
Nikolakopoulou, A., White, I. R., and Salanti, G. (2021). Network meta-analysis. In Handbook of Meta-Analysis, C. H. Schmid, T. Stijnen, and I. R. White (eds), pp. 187-217. Boca Raton: CRC Press.
Noma, H. (2023). Bayesian estimation and prediction for network meta-analysis with contrast-based approach. International Journal of Biostatistics, DOI: 10.1515/ijb-2022-0121.
Noma, H., Hamura, Y., Gosho, M., and Furukawa, T. A. (2023a). Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression. Research Synthesis Methods, DOI: 10.1002/jrsm.1652.
Noma, H., Hamura, Y., Sugasawa, S., and Furukawa, T. A. (2023b). Improved methods to construct prediction intervals for network meta-analysis. Research Synthesis Methods, DOI: 10.1002/jrsm.1651.
Noma, H., Nagashima, K., and Furukawa, T. A. (2020). Permutation inference methods for multivariate meta-analysis. Biometrics 76, 337-347.
Noma, H., Nagashima, K., Maruo, K., Gosho, M., and Furukawa, T. A. (2018). Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis. Statistics in Medicine 37, 1178-1190.
Salanti, G., Higgins, J. P., Ades, A. E., and Ioannidis, J. P. (2008). Evaluation of networks of randomized trials. Statistical Methods in Medical Research 17, 279-301.
Student (1908). The probable error of a mean. Biometrika 6, 1-25.
White, I., and Thomas, J. (2005). Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clinical Trials 2, 141-151.
White, I. R. (2015). Network meta-analysis. Stata Journal 15, 951-985.
White, I. R., Barrett, J. K., Jackson, D., and Higgins, J. P. (2012). Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 3, 111-125.
Whitehead, A. (2002). Meta-Analysis of Controlled Clinical Trials. Chichester: Wiley.
ダウンロード
公開済
投稿日時: 2023-08-19 16:49:22 UTC
公開日時: 2023-08-24 02:18:52 UTC
ライセンス
Copyright(c)2023
Noma, Hisashi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。