Characterization of carbohydrates, amino acids, viscosity, and antioxidant capacity in rice wines made in Saitama, Japan, with different sake rice
DOI:
https://doi.org/10.51094/jxiv.489キーワード:
rice wine、 carbohydrate、 amino acid、 principal component analysis抄録
We investigated the physicochemical properties Japanese rice wines, including their functional properties and carbohydrate, amino acid content, antioxidant capacity in rice wines in solution and Physicochemical properties in solid state. Three samples were tested. The glucose, allose, and raffinose contents in samples (A, B, C) in g/100 g were: (3.47, 3.45, 7.05), (1.60, 1.63, 1.61), and (2.14, 2.75, 1.49), respectively. The total amino acid in µmol/mL was: (3.1, 3.5, 4.4). Glutamic acid, alanine, and arginine varied in content across the samples. The viscosity (10 °C) and activation energy (ΔE) calculated using the Andrade equation were (2.81±0.03, 2.74±0.06, 2.69±0.03) mPa・s and (22.3±1.1, 22.0±0.2, 21.3±0.5) kJ/mol, respectively. Principal component analysis using FT-IR spectra confirmed the separation of the samples into principal components 2 and 3. The IC50 values from the DPPH radical scavenging test were (2364.7±185.3, 3041.9±355.1, 3842.7±228.1) µg/mL. Thus, the three rice wines had different carbohydrate and amino acid contents, viscosities, and antioxidant capacities.
利益相反に関する開示
The authors declare no conflict of interest.ダウンロード *前日までの集計結果を表示します
引用文献
Aidoo, K. E., Nout, M. J. R., Sarkar P. K.: Occurrence and function of yeasts in Asian indigenous fermented foods, FEMS Yeast Res., 6, 30–39 (2006). doi: 10.1111/j.1567-1364.2005.00015.x.
Kitagaki, H., Kitamoto, K.: Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives, Annu. Rev. Food. Sci. Technol., 4, 215–35 (2006). doi: 10.1146/annurev-food-030212-182545.
Das, A. J., Khawas, P., Miyaji, T., Deka, S. H.: HPLC and GC-MS analyses of organic acids, carbohydrates, amino acids and volatile aromatic compounds in some varieties of rice beer from northeast India HPLC and GC-MS analyses of rice beer, JIB., 120, 244–252 (2014). doi: 10.1002/jib.134.
Facchini, F., Chen, Y. D., Reaven, G. M.: Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity, Diabetes Care, 17, 115-119 (1994). doi: 10.2337/diacare.17.2.115.
Emberson, J. R., Bennett, D. A.: Effect of alcohol on risk of coronary heart disease and stroke: causality, bias, or a bit of both?, Vasc. Health Risk Manag., 2, 239–49 (2006). doi: 10.2147/vhrm.2006.2.3.239.
Schrieks, I. C., Stafleu, A. Griffioen-Roose, S., de Graaf, C., Witkamp R. F., Boerrig-ter-Rijneveld, R., Hendriks, H. F.: Moderate alcohol consumption stimulates food intake and food reward of savoury foods, Appetite, 89, 77–83 (2015). doi: 10.1016/j.appet.2015.01.021. Epub 2015 Jan 28.
Tokuoka, M., Honda, C., Totsuka, A., Shindo, H., Hosaka, M.: Analysis of the oligosac-charides in Japanese rice wine, sake, by hydrophilic interaction liquid chromatography-time-of-flight/mass spectrometry, J. Biosci. Bioeng., 124, 171–177 (2017). doi: 10.1016/j.jbiosc.2017.03.010.
Mimura, N., Isogai, A., Iwashita, K., Bamba, T., Fukusaki, E.: Gas chromatog-raphy/mass spectrometry based component profiling and quality prediction for Japanese sake, J. Biosci. Bioeng., 118, 406–14 (2014). doi: 10.1016/j.jbiosc.2014.
Remesar, X., Alemany, M.: Dietary Energy Partition: The Central Role of Glucose, Int. J. Mol. Sci., 21, 7729 (2020. doi: 10.3390/ijms21207729.
Kishida, K., Iida, T., Yamada, T., Toyoda, Y.: d-Allose is absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) in the rat small intestine, Metabol. Open, 11, 100112 (2021). doi: 10.1016/j.metop.2021.100112.
Muzquiz, M., Burbano, C., Pedrosa, M. M., Folkman, W., Gulewicz, K.: Lupins as a potential source of raffinose family oligosaccharides: Preparative method for their isolation and purification, Ind. Crops. Prod., 9, 183–188 (1999). doi: 10.1016/S0926-6690(98)00030-2.
Zartl, B., Silberbauer, K., Loeppert, R., Viernstein, H., Praznik, W., Mueller, M.: Fer-mentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics, Food Funct., 9, 1638–1646 (2018). doi: 10.1039/c7fo01887h.
Fernando, W. M., Hill, J. E., Zello, G. A., Tyler, R. T., Dahl, W. J., Van Kessel, A. G.: Diets supplemented with chickpea or its main oligosaccharide component raffinose modi-fy faecal microbial composition in healthy adults, Benef. Microbes., 1, 197–207 (2010). doi: 10.3920/BM2009.0027.
Okuda, M.: Rice used for Japanese sake making, Biosci. Biotechnol. Biochem., 83, 1428–1441 (2019). doi: 10.1080/09168451.2019.1574552.
Gogami, Y., Okada, K., Oikawa, T.: High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake, Chromatogr. B Analyt. Technol. Biomed. Life Sci., 879, 3259–3267 (2011). doi: 10.1016/j.jchromb.2011.04.006.
Bentley, R.: From miso, saké and shoyu to cosmetics: a century of science for kojic acid, Nat. Prod. Rep., 23 (6), 1046–1062 (2006). doi: 10.1039/b603758p.
Santos C. S., Nascimento, F. E. L.: Isolated branched-chain amino acid intake and mus-cle protein synthesis in humans: a biochemical review, Einstein (Sao Paulo), 17, eRB4898 (2019). doi: 10.31744/einstein journal/2019RB4898.
Kurihara, K.: Glutamate: from discovery as a food flavor to role as a basic taste (umami), Am. J. Clin. Nutr., 90, 719S–722S (2009). doi: 10.3945/ajcn.2009.27462D.
Ito, T., Suzuki, N., Nakayama, A., Ito, M., Hashizume, K.: Factors affecting phenolic ac-id liberation from rice grains in the sake brewing process, J. Biosci. Bioeng., 118, 640–645 (2014). doi: 10.1016/j.jbiosc.2014.05.013.
Mitomo, S., Negishi, Y., Mutai, T., Inoue, Y.: Development of Core-Shell Ion-Exchange Resin by Changing the Core-Shell Ratio and Its Elution Behavior with Carbohydrates, Chromatography, 42, 159–163 (2021). doi: 0.15583/jpchrom.2021.013.
Yoshimura, K., Sano, A., Suzuki, R., Mitomo, S., Negishi, Y., Mutai, T., Jr., F, A., See, G, L., Tanikawa, T., Inoue, Y.: Determination of sugars and amino acids in Japanese wine using core-shell liquid chromatography tandem electrochemical detection, TJPS., 46, 3 (2022).
Condé, B. C., Bouchard, E., Culbert, J. A., Wilkinson, K. L., Fuentes, S., Howell, K. S.: Soluble Protein and Amino Acid Content Affects the Foam Quality of Sparkling Wine, J. Agric. Food Chem., 65, 9110–9119 (2017). doi: 10.1021/acs.jafc.7b02675.
Gao, D., Kawai, N., Tamiya, T.: The anti-inflammatory effects of D-allose contribute to attenuation of cerebral ischemia-reperfusion injury, Med. Hypotheses, 76, 911–913 (2011). doi: 10.1016/j.mehy.2011.03.007.
Gao, D., Kawai, N., Nakamura, T., Lu, F., Fei, Z., Tamiya, T.: Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats, Neurol. Med. Chir (Tokyo)., 53, 365–374 U (2011). doi: 10.2176/nmc.53.365.
Tohi, Y., Taoka, R., Zhang, X., Matsuoka, Y., Yoshihara, A., Ibuki, E., Haba, R., Akimitsu, K., Izumori, K., Kakehi, Y., Sugimoto, M.: Antitumor Effects of Orally Admin-istered Rare Sugar D-Allose in Bladder Cancer, Int. J. Mol. Sci., 23, 6771 (2022). doi: 10.3390/ijms23126771.
Ham, S. Y., Kim, H. S., Cha, E., Lim, T., Byun, Y., Park, H. D.: Raffinose Inhibits Strep-tococcus mutans Biofilm Formation by Targeting Glucosyltransferase, Microbiol. Spectr., 10, e0207621 (2022). doi: 10.1128/spectrum.02076-21.
Tanase, R., Senda, R., Matsunaga, Y., Narukawa, M.: Taste Characteristics of Various Amino Acid Derivatives, J. Nutr. Sci. Vitaminol (Tokyo)., 68, 475–480 (2022). doi: 10.3177/jnsv.68.475.
Mantuano, P., Boccanegra, B., Bianchini, G., Cappellari, O., Tulimiero, L., Conte, E., Cirmi, S., Sanarica, F., De Bellis, M. Mele, A. Liantonio, A., Allegretti, M., and other 14 authors: Branched-Chain Amino Acids and Di-Alanine Supplementation in Aged Mice: A Translational Study on Sarcopenia, Nutrients, 15, 330 (2023). doi: 10.3390/nu15020330.
Sakata, T., Yoshimatsu, H., Kurokawa, M.: Hypothalamic neuronal histamine: implica-tions of its homeostatic control of energy metabolism, Nutrition, 13, 403–411 (1997). doi: 10.1016/s0899-9007(97)91277-6.
Lee, D. Y., Kim, E. H.: Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives, J. Cancer. Prev., 24, 72–78 (2019). doi: 10.15430/JCP.2019.24.2.72.
Oh, H. S., Oh, S. K., Lee, J. S., Wu, C., Lee, S. J.: Effects of l-arginine on growth hor-mone and insulin-like growth factor 1, Food Sci. Biotechnol., 26, 1749¬–1754 (2017). doi: 10.1007/s10068-017-0236-6.
Huynh, N. T., Tayek, J. A.: Oral arginine reduces systemic blood pressure in type 2 dia-betes: its potential role in nitric oxide generation, J. Am. Coll. Nutr., 21, 422–427 (2002). doi: 10.1080/07315724.2002.10719245.
Reddy, A., Norris, D. F., Momeni, S. S., Waldo, B., Ruby, J. D.: The pH of beverages in the United States, J. Am. Dent. Assoc., 147, 255–263 (2016). doi: 10.1016/j.adaj.2015.10.019.
Shin, K. S., Lee, J. H.: Acetaldehyde contents and quality characteristics of commercial alcoholic beverages, Food Sci. Biotechnol., 28, 1027–1036 (2019). doi: 10.1007/s10068-019-00564-1.
Tate, R. E., Watts, K. C., Allen, C. A. W., Wilkie, K. I.: The viscosities of three biodiesel fuels at temperatures up to 300°C. Fuel, 85, 1010–1015 (2006). doi: 10.1016/j.fuel.2005.10.015.
Hirotsune, M., Haratake, A., Komiya, A., Sugita, J., Tachihara, T., Komai, T., Hizume, K., Ozeki, K., Ikemoto, T.: Effect of ingested concentrate and components of sake on ep-idermal permeability barrier disruption by UVB irradiation, J. Agric. Food Chem., 53, 948–952 (2005). doi: 10.1021/jf048893s.
ダウンロード
公開済
投稿日時: 2023-08-19 06:34:09 UTC
公開日時: 2023-08-25 03:29:01 UTC
ライセンス
Copyright(c)2023
Inoue, YUTAKA
Sae Ueda
Takashi Tanikawa
Aiko Sano
Ryuichiro Suzuki
Hiroaki Todo
Yuji Higuchi
Kenichi Akao
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。