プレプリント / バージョン1

Lyapunov–Barrier Duality: A Structural Perspective

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.2002

キーワード:

Lyapunov function、 barrier function、 contraction theory、 region-based stability、 nonlinear control、 Hamilton-Jacobi-Bellman (HJB)、 reinforcement learning

抄録

This article proposes a unified region-based paradigm that reconnects historically independent developments in nonlinear control, optimal control, and safety-critical systems. We began with Lyapunov's original insight that stability is fundamentally a property of regions and their deformation under flow, we trace a conceptual lineage through Zubov's characterization (1950s), the variable-gradient method (1962), extended quadratic Lyapunov functions (1997-1998), contraction theory (2014-), and recent advances in safe reinforcement learning and Hamilton-Jacobi-Bellman methods (2020-). We argue that contemporary challenges in learning-based and safety-critical control stem from treating stability as a pointwise property rather than a geometric one. A unified region-based view clarifies the complementary roles of Lyapunov functions (inner contraction), barrier functions (outer invariance), and value functions (performance landscapes within feasible domains). It also highlights constructive methods that jointly design gradients and level sets. By reconstructing these connections, we provide a coherent framework that situates modern tools within Lyapunov's original geometric philosophy—not as a new theory, but as a synthesis for interpreting and integrating existing methods.

利益相反に関する開示

The author declares no conflicts of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

A. M. Lyapunov. The General Problem of the Stability Of Motion. Taylor & Francis, 1992.

V. I. Zubov. Methods Of A. M. Lyapunov And Their Applications. P. Noordhoff, English edition by Leo F. Boron edition, 1964.

D. G. Schultz and J. E. Gibson. The variable gradient method for generating liapunov functions. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 81(4):203–210, 1962. doi:10.1109/TAI.1962.6371818.

S. Sasaki and K. Uchida. A convex characterization of analysis and synthesis for nonlinear systems via extended quadratic Lyapunov function. In Proceedings of the 1997 American Control Conference, volume 1, pages 411–415 vol.1, June 1997. doi:10.1109/ACC.1997.611830.

S. Sasaki and K. Uchida. Nonlinear H∞ Control System Design via Extended Quadratic Lyapunov Function. IFAC Proceedings Volumes, 31(17):161–166, 1998. doi:10.1016/S1474-6670(17)40328-4.

F. Forni and R. Sepulchre. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control, 59(3):614–628, 2014. doi:10.1109/TAC.2013.2285771.

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview. Annual Reviews in Control, 52:135–169, January 2021. doi:10.1016/j.arcontrol.2021.10.001.

C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on Robotics, 39(3):1749–1767, 2023. doi:10.1109/TRO.2022.3232542.

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, may 2022. doi:10.1146/annurev-control-042920-020211.

J. Liu, Y. Meng, M. Fitzsimmons, and R. Zhou. Physics-informed neural network Lyapunov functions: PDE characterization, learning, and verification. Automatica, 175:112193, may 2025. doi:10.1016/j.automatica.2025.112193.

Y. Meng and J. Liu. Towards Learning and Verifying Maximal Lyapunov-Barrier Functions with a Zubov PDE Formulation, November 2025. arXiv:2511.09523, doi:10.48550/arXiv.2511.09523.

A. Baheri. Distributionally robust Lyapunov–Barrier Networks for safe and stable control under uncertainty. Results in Control and Optimization, 19:100556, June 2025. doi:10.1016/j.rico.2025.100556.

R. S. Sutton and A. G. Barto. Reinforcement Learning - An Introduction. The MIT Press, second edition, November 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization Algorithms, August 2017. arXiv:1707.06347, doi:10.48550/arXiv.1707.06347.

A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):3861–3876, 2017. doi:10.1109/TAC.2016.2638961.

A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. Control Barrier Functions: Theory and Applications. In 2019 18th European Control Conference (ECC), pages 3420–3431, June 2019. doi:10.23919/ECC.2019.8796030.

M. Z. Romdlony and B. Jayawardhana. Uniting Control Lyapunov and Control Barrier Functions. In 53rd IEEE Conference on Decision and Control, pages 2293–2298, February 2014. doi:10.1109/CDC.2014.7039737.

M. D. S. Aliyu. An approach for solving the Hamilton-Jacobi-Isaacs equation (HJIE) in nonlinear control. Automatica, 39(5):877–884, 2003. doi:10.1016/S0005-1098(03)00025-6.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004. doi:10.1017/CBO9780511804441.

J. Mawhin. Alexandr Mikhailovich Lyapunov, thesis on the stability of motion (1892). In Landmark Writings in Western Mathematics 1640-1940, pages 664–676. Elsevier Science, January 2005. doi:10.1016/B978-044450871-3/50132-7.

P. Giesl and S. Hafstein. Review on computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 20(8):2291–2331, October 2015. doi:10.3934/dcdsb.2015.20.2291.

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998. doi:10.1016/S0005-1098(98)00019-3.

S. Sasaki and K. Uchida. Presentation slides for ”Nonlinear H-infinity Control System Design via Extended Quadratic Lyapunov Function” (nolcos’98), August 2025. doi:10.5281/zenodo.16663314.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, 1994. doi:10.1137/1.9781611970777.

L. El Ghaoui, F. Delebecque, and R. Nikoukhah. LMITOOL : A User-Friendly Interface for LMI Optimization , User’s Guide. 1995.

S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing SOSTOOLS: A general purpose sum of squares programming solver. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., volume 1, pages 741–746 vol.1, February 2002. doi:10.1109/CDC.2002.1184594.

S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS - Sum of Squares Optimization Toolbox for MATLAB User’s guide, 2002.

Y. Meng, Y. Li, M. Fitzsimmons, and J. Liu. Smooth converse Lyapunov-barrier theorems for asymptotic stability with safety constraints and reach-avoid-stay specifications. Automatica, 144:110478, October 2022. doi:10.1016/j.automatica.2022.110478.

C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe Nonlinear Control Using Robust Neural Lyapunov-Barrier Functions. In 5th Annual Conference on Robot Learning, June 2021. URL:https://openreview.net/forum?id=8K5kisAnb_p.

ダウンロード

公開済


投稿日時: 2025-11-21 05:42:01 UTC

公開日時: 2025-11-27 00:11:34 UTC
研究分野
電気電子工学