箙ゲージ理論と箙 W 代数
DOI:
https://doi.org/10.51094/jxiv.19キーワード:
ゲージ理論、 箙多様体、 W 代数抄録
We provide a brief introduction to quiver W-algebra, which is a gauge theory construction of W-algebra. We show that the gauge theory partition function is generated by the screening charge, and the generating current of the W-algebra is given by the qq-character, a double quantization of the character for the fundamental representations associated with the quiver.
ダウンロード *前日までの集計結果を表示します
引用文献
L. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), 167–197, arXiv:0906.3219 [hep-th].
M. Aganagic and N. Haouzi, ADE Little String Theory on a Riemann Surface (and Triality), arXiv:1506.04183 [hep-th].
H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010), 125, arXiv:0910.4431 [hep-th].
L. Clavelli and J. A. Shapiro, Pomeron factorization in general dual models, Nucl. Phys. B57 (1973), 490–535.
E. Frenkel and N. Reshetikhin, Quantum affine algebras and deformations of the virasoro and W-algebras, Commun. Math. Phys. 178 (1996), 237–264, q-alg/9505025 [math.QA].
E. Frenkel and N. Reshetikhin, Deformations of W-algebras associated to simple Lie algebras, Comm. Math. Phys. 197 (1998), 1–32, q-alg/9708006 [math.QA].
E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of W-algebras, Recent Developments in Quantum Affine Alge- bras and Related Topics, Contemp. Math., vol. 248, Amer. Math. Soc., 1999, math/9810055 [math.QA], pp. 163–205, math/9810055 [math.QA].
T. Kimura, Quantum Field Theory, Quantum Geometry, and Quantum Algebras (in Japanese), Math. Sci. 653 (2017), 56–63, arXiv:1705.05099 [hep-th].
T. Kimura, Double quantization of Seiberg–Witten geometry and W-algebras, Topo- logical Recursion and its Influence in Analysis, Geometry, and Topology, Proc. Symp. Pure Math., vol. 100, 2018, arXiv:1612.07590 [hep-th], pp. 405–431, arXiv:1612.07590 [hep-th].
T. Kimura and V. Pestun, Fractional quiver W-algebras, Lett. Math. Phys. 108 (2018), 2425–2451, arXiv:1705.04410 [hep-th].
T. Kimura and V. Pestun, Quiver elliptic W-algebras, Lett. Math. Phys. 108 (2018), 1383–1405, arXiv:1608.04651 [hep-th].
T. Kimura and V. Pestun, Quiver W-algebras, Lett. Math. Phys. 108 (2018), 1351–1381, arXiv:1512.08533 [hep-th].
A. Marshakov and N. A. Nekrasov, Extended Seiberg–Witten theory and integrable hierarchy, JHEP 01 (2007), 104, arXiv:hep-th/0612019.
H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody alge- bras, Duke Math. J. 76 (1994), 365–416.
H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, American Mathe- matical Society, 1999.
N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters, JHEP 03 (2016), 181, arXiv:1512.05388 [hep-th].
H. Nakajima and K. Yoshioka, Lectures on instanton counting, CRM Proc. Lec. Notes 38 (2003), 31–102, arXiv:math/0311058 [math.AG].
J. Shiraishi, Lectures on Quantum Integrable Systems (in Japanese), Saiensu-Sha, 2003.
J. Shiraishi, H. Kubo, H. Awata, and S. Odake, A Quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), 33–51, arXiv:q-alg/9507034 [math.QA].
ダウンロード
公開済
投稿日時: 2022-03-24 05:51:39 UTC
公開日時: 2022-03-28 06:11:14 UTC
ライセンス
Copyright(c)2022
木村, 太郎
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。