プレプリント / バージョン1

Impact of Al-tobermorite formation on ion transport in cementitious materials

##article.authors##

  • Abudushalamu Aili Graduate School of Environmental Studies, Nagoya University
  • Maruyama, Ippei Graduate School of Engieering, The University of Tokyo
  • Yoshito Umeki Civil & Architectural Engineering Department, Chubu electric power Co., Inc.
  • Kazuhiro Yokokura Nuclear Safety Research & Development Center, Chubu electric power co., Inc.

DOI:

https://doi.org/10.51094/jxiv.179

キーワード:

Ionic diffusion、 tortuosity、 Al-tobermorite、 aged concrete、 cesium adsorption

抄録

In concrete structures intended for long-term use, the diffusion properties change over time with possible chemical reactions that may happen in the concrete. In this study, we performed a two-week Cesium Chloride diffusion test on cored samples from five different walls in a nuclear power plant. The reaction between feldspar group aggregates and cement paste was confirmed previously. We measured the diffusion profiles of Cesium and Chloride ions by electron probe micro analyzer. The diffusion of chloride ions was faster than cesium. Cesium was adsorbed into certain aggregates and replaced sodium, resulting in an anomalous diffusion profile. Taking into account the impact of charged surface of calcium aluminate silicate hydrates (C-A-S-H), we simulated the ionic diffusion with the finite difference method and obtained an apparent diffusion coefficient. The diffusion was slow in samples with lower calcium over alumina plus silica ratio of amorphous C-A-S-H. However, diffusion was more effortless in the samples containing the crystal form of C-A-S-H, Al-tobermorite. Such ease of diffusion could be attributed to the difference in morphology of C-A-S-H. In contrast to samples without Al-tobermorite, we observed higher cesium concentrations than chloride near the diffusion surface in samples with Al-tobermorite. It seems that the cesium was adsorbed in cement paste by exchanging with alkali on Al-sites.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

CSJ: Kagaku Binran Basic Edition II. Maruzen Publishing (2004)

Dauzeres, A., Le Bescop, P., Sardini, P., Cau Dit Coumes, C.: Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results. Cem. Concr. Res. 40, 1327–1340 (2010). https://doi.org/10.1016/j.cemconres.2010.03.015

Elakneswaran, Y., Iwasa, A., Nawa, T., Sato, T., Kurumisawa, K.: Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials. Cem. Concr. Res. 40, 1756–1765 (2010). https://doi.org/10.1016/j.cemconres.2010.08.019

Elakneswaran, Y., Nawa, T., Kurumisawa, K.: Influence of surface charge on ingress of chloride ion in hardened pastes. Mater. Struct. Constr. 42, 83–93 (2009). https://doi.org/10.1617/s11527-008-9368-8

Friedmann, H., Amiri, O., Aït-Mokhtar, A.: Physical modeling of the electrical double layer effects on multispecies ions transport in cement-based materials. Cem. Concr. Res. 38, 1394–1400 (2008). https://doi.org/10.1016/j.cemconres.2008.06.003

Garboczi, E.J.: Permeability, diffusivity, and microstructural parameters: A critical review. Cem. Concr. Res. 20, 591–601 (1990). https://doi.org/10.1016/0008-8846(90)90101-3

Gartner, E., Maruyama, I., Chen, J.: A new model for the CSH phase formed during the hydration of Portland cements. Cem. Concr. Res. 97, 95–106 (2017)

Georget, F., Bénier, C., Wilson, W., Scrivener, K.L.: Chloride sorption by C-S-H quantified by SEM-EDX image analysis. Cem. Concr. Res. 152, 1–11 (2022)(a). https://doi.org/10.1016/j.cemconres.2021.106656

Georget, F., Wilson, W., Matschei, T.: Long-term extrapolation of chloride ingress : an illustration of the feasibility and pitfalls of the square root law Long-term extrapolation of chloride ingress : an illustration of the feasibility and pitfalls of the square root law Cl - ingress Surface. Cem. Concr. Compos. (2022)(b). https://doi.org/10.13140/RG.2.2.18420.22403

Goto, S., Roy, D.M.: Diffusion of ions through hardened cement pastes. Cem. Concr. Res. 11, 751–757 (1981). https://doi.org/10.1016/0008-8846(81)90033-8

Gupta, A., Shim, S., Issah, L., McKenzie, C., Stone, H.A.: Diffusion of multiple electrolytes cannot be treated independently: Model predictions with experimental validation. Soft Matter. 15, 9965–9973 (2019). https://doi.org/10.1039/c9sm01780a

Hong, S.Y., Glasser, F.P.: Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cem. Concr. Res. 32, 1101–1111 (2002). https://doi.org/10.1016/S0008-8846(02)00753-6

Horiuchi, M., Sugihara, K., Iwasawa, J.: Record of construction of unit 1 Hamaoka nuclear power plant. Concr. J. 13, 11–20 (1975). https://doi.org/10.3151/coj1975.13.8_11

Hosokawa, Y., Yamada, K., Johannesson, B., Nilsson, L.O.: Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums. Mater. Struct. Constr. 44, 1577–1592 (2011). https://doi.org/10.1617/s11527-011-9720-2

Ichikawa, T.: Theory of Ionic Diffusion in Water-saturated Porous Solid with Surface Charge. J. Adv. Concr. Technol. 20, 430–443 (2022). https://doi.org/10.3151/jact.20.430

Ichikawa, T., Yamada, K., Haga, K.: Method for predicting diffusion penetration rate of chloride ions into concrete by EPMA measurement. In: Annual conference of Japan Cement Association. pp. 70–71 (2021)

Johannesson, B., Yamada, K., Nilsson, L.O., Hosokawa, Y.: Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates. Mater. Struct. Constr. 40, 651–665 (2007). https://doi.org/10.1617/s11527-006-9176-y

JSA: Portland cement (JIS R5210). Tokyo, Japanese Stand. Assoc. (1973)

Kari, O.P., Elakneswaran, Y., Nawa, T., Puttonen, J.: A model for a long-term diffusion of multispecies in concrete based on ion-cement-hydrate interaction. J. Mater. Sci. 48, 4243–4259 (2013). https://doi.org/10.1007/s10853-013-7239-3

Lothenbach, B., Nonat, A.: Calcium silicate hydrates: Solid and liquid phase composition. Cem. Concr. Res. 78, 57–70 (2015). https://doi.org/10.1016/j.cemconres.2015.03.019

Maage, M., Helland, S., Ervin, P., Vennesland, Ø., Carlsen, J.E.: Service life prediction of precast concrete structures exposed to chloride environment. Adv. Civ. Eng. 93, (1996). https://doi.org/10.1155/2019/3216328

Martín-Pérez, B., Zibara, H., Hooton, R.D., Thomas, M.D.A.: Study of the effect of chloride binding on service life predictions. Cem. Concr. Res. 30, 1215–1223 (2000). https://doi.org/10.1016/S0008-8846(00)00339-2

Martin, S.I.: Synthesis of tobermorite: A cement phase expected under repository conditions. In: International high-level radioactive waste management conference: progress toward understanding. pp. 1–5. , Las Vegas, NV (United States) (1994)

Maruyama, I., Rymeš, J., Aili, A., Sawada, S., Kontani, O., Ueda, S., Shimamoto, R.: Long-term use of modern Portland cement concrete: The impact of Al-tobermorite formation. Mater. Des. 198, (2021). https://doi.org/10.1016/j.matdes.2020.109297

Mori, D., Yamada, K., Hosokawa, Y., Yamamoto, M.: Applications of electron probe microanalyzer for measurement of Cl concentration profile in concrete. J. Adv. Concr. Technol. 4, 369–383 (2006). https://doi.org/10.3151/jact.4.369

Page, C.L., Short, N.R., El Tarras, A.: Diffusion of chloride ions in hardened cement pastes. Cem. Concr. Res. 11, 395–406 (1981). https://doi.org/10.1016/0008-8846(81)90111-3

Richardson, I.G.: Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of {C-S-H}: applicability to hardened pastes of tricalcium silicate, $β$-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, meta. Cem. Concr. Res. 34, 1733–1777 (2004). https://doi.org/https://doi.org/10.1016/j.cemconres.2004.05.034

Richardson, I.G.: Model structures for C-(A)-S-H(I). Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 70, 903–923 (2014). https://doi.org/10.1107/S2052520614021982

Rymeš, J., Maruyama, I., Shimamoto, R., Tachibana, A., Tanaka, Y., Sawada, S., Ichikawa, Y., Kontani, O.: Long-term material properties of a thick concrete wall exposed to ordinary environmental conditions in a nuclear reactor building: The contribution of cement hydrates and feldspar interaction, (2019)

Samson, E., Marchand, J.: Modeling the effect of temperature on ionic transport in cementitious materials. Cem. Concr. Res. 37, 455–468 (2007). https://doi.org/10.1016/j.cemconres.2006.11.008

Samson, E., Marchand, J., Beaudoin, J.J.: Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials. An overview. Cem. Concr. Res. 30, 1895–1902 (2000). https://doi.org/10.1016/S0008-8846(00)00458-0

Shi, Z., Geiker, M.R., Lothenbach, B., De Weerdt, K., Garzón, S.F., Enemark-Rasmussen, K., Skibsted, J.: Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem. Concr. Compos. 78, 73–83 (2017). https://doi.org/10.1016/j.cemconcomp.2017.01.002

Sui, S., Georget, F., Maraghechi, H., Sun, W., Scrivener, K.: Towards a generic approach to durability: Factors affecting chloride transport in binary and ternary cementitious materials. Cem. Concr. Res. 124, 105783 (2019). https://doi.org/10.1016/j.cemconres.2019.105783

Thomas, M.D.A., Bamforth, P.B.: Modelling chloride diffusion in concrete effect of fly ash and slag. Cem. Concr. Res. 29, 487–495 (1999). https://doi.org/10.1016/S0008-8846(98)00192-6

Tomita, S., Haga, K., Hosokawa, Y., Yamada, K., Igarashi, G., Maruyama, I.: Modeling of the adsorption behavior of cs and sr on calcium silicate hydrates. J. Adv. Concr. Technol. 19, 1061–1074 (2021). https://doi.org/10.3151/jact.19.1061

Xi, Y., Bazant, Z.: Modeling chloride penetration in saturated concrete. J. Mater. Civ. Eng. 11, 58–65 (1999)

ダウンロード

公開済


投稿日時: 2022-10-02 01:56:03 UTC

公開日時: 2022-10-05 08:44:42 UTC
研究分野
建築学・土木工学