プレプリント / バージョン1

A Free-Energy Bayesian Framework for Probabilistic Stability under Noisy and Limited Data

##article.authors##

  • Sakai, Jun Independent Researcher

DOI:

https://doi.org/10.51094/jxiv.1650

キーワード:

Free Energy Principle、 Bayesian Inference、 Probabilistic Stability、 Lyapunov Function、 Variational Inference、 Robust Learning、 Noisy Data

抄録

Learning systems often face instability when trained on limited or noisy data. We present a Free-Energy–Bayesian Framework that unifies free-energy minimization with a Bayesian stability index to construct a composite Lyapunov-like function ensuring probabilistic stability. Theoretical analysis establishes Lyapunov convergence under mild assumptions, while experiments on synthetic noisy datasets confirm robustness and reduced variance compared to baselines.

利益相反に関する開示

The author declares no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Friston, K. (2005). A theory of cortical responses. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360, 815–836.

Friston, K. (2010). The free-energy principle: A unified brain theory? *Nature Reviews Neuroscience*, 11(2), 127–138.

Bishop, C. M. (2006). *Pattern Recognition and Machine Learning*. Springer.

Khalil, H. K. (2002). *Nonlinear Systems* (3rd ed.). Prentice Hall.

ダウンロード

公開済


投稿日時: 2025-10-13 10:24:12 UTC

公開日時: 2025-10-17 05:17:03 UTC
研究分野
情報科学