Food procurement of staple cereals for world major cities in 2050
DOI:
https://doi.org/10.51094/jxiv.1199キーワード:
food procurment、 food-miles、 cities、 global、 future projection抄録
Cities are dependent on food transported domestically or internationally. However, little is known about how the burden of transporting food to cities will changes under future socio-economic and climatic conditions. Here we present the current transport loads of major commodities (wheat and rice) and their projections in 2050 for 208 world’s major cities, using food-miles as a metric. The estimated freight transport routes and resulting distance-sufficiency curves characterized the cities well and provided insights to improve the robustness of food procurement. The least food-miles required to achieve 70% of the city’s wheat (rice) demand in 2050 were projected to increase in 68 (85) cities and decrease in 61 (54) cities, compared to the variations in food-miles associated with the current natural climate variability, with 79 (54) cities remaining unchanged. These findings provide city-specific information that ultimately helps to plan for more robust food procurement in the context of climate-resilient cities.
利益相反に関する開示
The authors declare no competing interests.ダウンロード *前日までの集計結果を表示します
引用文献
World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) (United Nations, Department of Economic and Social Affairs, Population Division, 2019). https://population.un.org/wup/assets/WUP2018-Report.pdf
Seto, K. C., Ramankutty, N. Hidden linkages between urbanization and food systems. Science 352, 943–945 (2016). doi:10.1126/science.aaf7439
Ruel, M. T., Garrett, J. L., Hawkes, C. & Cohen, M. J. The food, fuel, and financial crises affect the urban and rural poor disproportionately: a review of the evidence. J Nutr. 140, 170S–6S (2010). doi:10.3945/jn.109.110791
Miller, S. J. et al. Telecoupled systems are rewired by risks. Nat. Sustain. 7, 247–254 (2024). https://doi.org/10.1038/s41893-024-01273-2
Gomez, M. et al. Supply chain diversity buffers cities against food shocks. Nature 595, 250–254 (2021). https://doi.org/10.1038/s41586-021-03621-0
Nóia Júnior, R. de S. et al. Needed global wheat stock and crop management in response to the war in Ukraine. Glob. Food Secur. 35, 100662 (2022). https://doi.org/10.1016/j.gfs.2022.100662
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021). https://doi.org/10.1038/s43016-021-00400-y
Hasegawa, T., Wakatsuki, H. & Nelson, G. C. Evidence for and projection of multi-breadbasket failure caused by climate change. Curr. Opin. Environ. Sustain. 58, 101217 (2022). https://doi.org/10.1016/j.cosust.2022.101217
Chen, X., Anderson, W., You, L. & Pope, E. Observed trends in multiple breadbasket yield shocks. Environ. Res. Lett. 19, 104005 (2024). https://dx.doi.org/10.1088/1748-9326/ad7040
Zabel, F., Knüttel, M. & Poschlod, B. CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment. EGUsphere [preprint] (2024). https://doi.org/10.5194/egusphere-2024-2526
Zhang, T. et al. Increased wheat price spikes and larger economic inequality with 2 °C global warming. One Earth 5, 907–916 (2022). https://doi.org/10.1016/j.oneear.2022.07.004
Tuholske, C. et al. A framework to link climate change, food security, and migration: unpacking the agricultural pathway. Popul Environ 46, 8 (2024). https://doi.org/10.1007/s11111-024-00446-7
Dodman, D. et al. Cities, Settlements and Key Infrastructure. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 6 (Cambridge University Press, 2022). doi:10.1017/9781009325844.008
d’Amour, C. B., Weston, A. International trade and the stability of food supplies in the Global South. Environ Res Lett 15, 074005 (2020). https://dx.doi.org/10.1088/1748-9326/ab832f
Xia, L. et al. Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection. Nat Food 3, 586–596 (2022). https://doi.org/10.1038/s43016-022-00573-0
Ten things you should know about maize and wheat (International Maize and Wheat Improvement Center (CIMMYT), 2019). https://www.cimmyt.org/news/ten-things-you-should-know-about-maize-and-wheat/
2023 Annual Report (International Rice Research Institute (IRRI), 2023). http://books.irri.org/AR2023_content.pdf
FAOSTAT – Trade (FAO, 2025). https://www.fao.org/faostat/en/#data/TCL
Food Miles: Background and Marketing (National Center for Appropriate Technology (NCAT), 2008). https://attradev.ncat.org/wp-content/uploads/2022/06/foodmiles.pdf
Li, M. et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 3, 445–453 (2022). https://doi.org/10.1038/s43016-022-00531-w
Global food losses and food waste – Extent, causes and prevention (FAO, 2011). https://www.fao.org/4/mb060e/mb060e00.pdf
Beyer, R.M., Hua, F., Martin, P.A. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun Earth Environ 3, 49 (2022). https://doi.org/10.1038/s43247-022-00360-6
Schneider, J. M. et al. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS ONE 17, e0263063 (2022). https://doi.org/10.1371/journal.pone.0263063
Anderson, W. et al. Climate variability and simultaneous breadbasket yield shocks as observed in long-term yield records. Agric. For. Meteorol. 331, 109321 (2023). https://doi.org/10.1016/j.agrformet.2023.109321
Fukś, M. Changes in river ice cover in the context of climate change and dam impacts: a review. Aquat. Sci. 85, 113 (2023). https://doi.org/10.1007/s00027-023-01011-4
Drought Status Update for the Midwest and Missouri River Basin (National Integrated Drought Information System, 2022). https://www.drought.gov/drought-status-updates/drought-status-update-midwest-and-missouri-river-basin-10-25-22
Low water levels in Panama Canal due to increasing demand exacerbated by El Niño event (World Weather Attribution, 2024). https://www.worldweatherattribution.org/low-water-levels-in-panama-canal-due-to-increasing-demand-exacerbated-by-el-nino-event/
Palin, E. J., Oslakovic, I. S., Gavin, K. & Quinn, A. Implications of climate change for railway infrastructure. WIREs Clim. Change 12, e728 (2021). https://doi.org/10.1002/wcc.728
Japan’s searing summer heat is warping railway tracks more often (The Japan Times, 2024). https://www.japantimes.co.jp/news/2024/08/15/japan/heat-warping-railway-tracks/
Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018). https://dx.doi.org/10.1088/1748-9326/aabd42
How The Northern Sea Routes Will Change The World's Major Traffic Flows (Nikkei Asia, 2024). https://vdata.nikkei.com/en/newsgraphics/northern-sea-route/
The spatial distribution of population in 2010 (WorldPop, 2024). doi:10.5258/SOTON/WP00647
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016). https://dx.doi.org/10.1088/1748-9326/11/8/084003
Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustain. 11, 2106 (2019). https://doi.org/10.3390/su11072106
Yu, Q. et al. A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020) https://doi.org/10.5194/essd-12-3545-2020
Jägermeyr, J. et al. AgMIP Data Aggregator Tool (2024). doi:10.21981/1XJY-C362
Fujimori, S. et al. Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Sci. Data 5, 180210 (2018). https://doi.org/10.1038/sdata.2018.210
AIM-SSP/RCP Gridded Emissions and Land-use data (National Institute for Environmental Studies (NIES), 2018). doi:10.18959/20180403.001
Harrington-Tsunogai, J. et al. ENSO impacts on global yields of major crops projected by a climate-crop model ensemble. Jxiv (Preprint) (2025). https://doi.org/10.51094/jxiv.1159
Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [Basic] Manual; Version 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012). https://www.nies.go.jp/social/publications/dp/pdf/2012-01.pdf
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.025
Wu, L., Xu, Y., Wang, Q., Wang, F. & Xu, Z. Mapping global shipping density from AIS data. J. Navig. 70, 67–81 (2017). https://doi.org/10.1017/S0373463316000345
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959). https://doi.org/10.1007/BF01386390
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Ray, D. K. et al. Crop harvests for direct food use insufficient to meet the UN’s food security goal. Nat. Food 3, 367–374 (2022). https://doi.org/10.1038/s43016-022-00504-z
Detailed trade matrix (FAO, 2025). https://www.fao.org/faostat/en/#data/TM
ダウンロード
公開済
投稿日時: 2025-04-17 08:20:33 UTC
公開日時: 2025-04-24 00:51:35 UTC
ライセンス
Copyright(c)2025
Toshichika Iizumi
Takahiro Takimoto
Michiya Hayashi
Hideo Shiogama
Shinichiro Fujimori
Tomoko Hasegawa

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。