このプレプリントは論文として出版されています
DOI: https://doi.org/10.7566/JPSJ.94.053001
プレプリント / バージョン3

Electric potentials and field lines for uniformly-charged tube and cylinder expressed by Appell's hypergeometric function and integration of Z(u|m) sc(u|m)

##article.authors##

  • Takahashi, Daisuke Research and Education Center for Natural Sciences, Keio University

DOI:

https://doi.org/10.51094/jxiv.1133

キーワード:

Appell's hypergeometric function、 electric field line、 Jacobi zeta function、 elliptic integrals

抄録

The closed-form expressions of electric potentials and field lines for a uniformly-charged tube and cylinder are presented using elliptic integrals and Appell's hypergeometric functions, where field lines are depicted by introducing the concept of the field line potential in axisymmetric systems, whose contour lines represent electric field lines outside the charged region, thought of as an analog of the conjugate harmonic function in the presence of non-uniform metric. The field line potential for the tube shows a multi-valued behavior and enables us to define a topological charge. The integral of $Z(u|m)\operatorname{sc}(u|m)$, where $ Z $ and $ \operatorname{sc} $ are the Jacobi zeta and elliptic functions, is also expressed by Appell's hypergeometric function as a by-product, which was missing in classical tables of formulas.

 In the Addendum appended after the main article, several relevant references are provided and the decomposition of
the solution by "degrees of transcendence" is proposed.

 The attached supplementary calculations provide detailed derivations of several formulas including the integral in the
title and discuss the resemblance between the field line potential for tube and the electric potential for disk.

利益相反に関する開示

The author has no conflict of interest to declare.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

A. Erd´elyi (ed.), Higher Transcendental Functions - Volume I - Based, in part, on notes left by Harry Bateman, (McGraw-Hill, New York, 1953).

T. Kimura, Hypergeometric functions of two variables, (Lecture Notes, Univ. Tokyo, Tokyo, 1973).

H. Exton, Multiple hypergeometric functions and applications, (Ellis Horwood Ltd., Chichester, 1976).

H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, (Ellis Horwood Ltd., Chichester, 1985).

T.-F. Feng, C.-H. Chang, J.-B. Chen, Z.-H. Gu, and H.-B. Zhang, Evaluating Feynman integrals by the hypergeometry, Nucl. Phys. B 927, 516 (2018).

S. Bera and T. Pathak, Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella F^(3)_D and Lauricella-Saran F^(3)_S and their application to Feynman integrals, Comput. Phys. Commun. 306, 109386 (2025).

B. Bhattacharjee, P. Nandy, and T. Pathak, Eigenstate capacity and Page curve in fermionic Gaussian states, Phys. Rev. B 104, 214306 (2021).

B. Ananthanarayan, S. Bera, S. Friot, O. Marichev, and T. Pathak, On the evaluation of the Appell F_2 double hypergeometric function, Comput. Phys. Commun. 284, 108589 (2023).

R. Ito, S. Kumabe, A. Nakagawa, and Y. Nemoto, Kamp´e de F´eriet hypergeometric functions over finite fields, Res. Number Theory 9, 52 (2023).

V. P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63, 405 (2008).

H. Lass and L. Blitzer, The gravitational potential due to uniform disks and rings, Celest. Mech. 30, 225 (1983).

J. T. Conway, Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries, Mon. Not. R. Astron. Soc. 316, 540 (2000).

T. Fukushima, Precise computation of acceleration due to uniform ring or disk, Celest. Mech. Dyn. Astron. 108, 339 (2010).

T. Fukushima, ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS, The Astronomical Journal 152, 35 (2016).

S. Tanaka and E. Date, KdV Houteisiki (The KdV equation), (Kinokuniya Shoten, Tokyo, 1979), [written in Japanese].

E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, (Springer, Berlin, 1994).

M. Toda, Daen Kansuu Nyuumon (Introduction to Elliptic Functions), (Nippon Hyoron sha, Tokyo, 2001), [written in Japanese].

N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (American Mathematical Society, Providence, Rhode Island, 2nd edition, 1990).

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, (Springer-Verlag, Berlin, Heidelberg, 2nd edition, 1971).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Dover, Mineola, New York, 9th edition, 1965).

R. Courant and D. Hilbert, Methods of Mathematical Physics Volume II, (Wiley, New York, 1989).

O. Ciftja, Coulomb self-energy of a uniformly charged three-dimensional cylinder, Physica B: Condensed Matter 407, 2803 (2012).

O. Ciftja and J. Batle, Coulomb potential and energy of a uniformly charged cylindrical shell, Journal of Electrostatics 96, 45 (2018).

J. Batle, O. Ciftja, and T. K. Pog´any, Hypergeometric solutions for Coulomb self-energy model of uniformly charged hollow cylinder, Integral Transforms and Special Functions 30, 418 (2019).

E. E. Callaghan and S. H. Maslen, THE MAGNETIC FIELD OF A FINITE SOLENOID, Technical Report NASA-TN-D-465, NASA (1960), https://www.osti.gov/biblio/4121210.

J. Conway, Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions, IEEE Transactions on Magnetics 37, 2977 (2001).

P. Appell, Quelques remarques sur la th´eorie des potentiels multiformes, Mathematische Annalen 30, 155 (1887).

R. J. Gleiser and J. A. Pullin, Appell rings in general relativity, Classical and Quantum Gravity 6, 977 (1989).

D. Kofroˇn, P. Kotlaˇr´ık, and O. Semer´ak, Relativistic disks by Appell-ring convolutions (2023), arXiv:2310.16669.

A. Erd´elyi (ed.), Higher Transcendental Functions - Volume II - Based, in part, on notes left by Harry Bateman, (McGraw-Hill, New York, 1953).

D. A. Takahashi, Integrable model for density-modulated quantum condensates: Solitons passing through a soliton lattice, Phys. Rev. E 93, 062224 (2016).

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, (Cambridge University Press, Cambridge, 4th edition, 1927).

ダウンロード

公開済


投稿日時: 2025-03-09 16:54:40 UTC

公開日時: 2025-03-17 05:38:59 UTC — 2025-10-28 02:43:46 UTCに更新

バージョン

改版理由

Addendumとsupplementary calculationsを追加。
研究分野
物理学