薬理学教育で使用されるシミュレーターおよびシミュレーター作成時の統計モデルに関する総説
DOI:
https://doi.org/10.51094/jxiv.1059キーワード:
薬理学教育、 動物代替法、 シミュレーター、 統計モデル、 シグモイド曲線抄録
動物実験は薬理学教育において長年にわたり行われている。しかし、動物愛護の観点から実験動物の使用数を減らすことが必要である。シミュレーターの使用は効果的であるが、既存の動物実験用のシミュレーターが存在しない場合にはシミュレーターを作成する必要がある。この総説で筆者らは薬理学教育で使用するためのシミュレーター(自由にダウンロード可能なあるいは市販の)について説明する。さらに、動物実験のシミュレーターを作成するための2種類の方法を紹介する。1つ目は生物学的検定法、2つ目は薬物投与から反応を示すまでの時間を計測する実験である。また、実習結果に対して当てはめる5つの曲線(ロジスティック曲線、正規分布の累積分布関数、Gompertz曲線、von Bertalanffy曲線、Weibull分布の累積分布関数)およびそれらの逆関数を紹介する。この手法を使用することで薬物投与から反応を示すまでの時間を算出するためのシミュレーターを作成することが可能になる。さらに、局所麻酔薬のための階層ベイズモデルを用いた統計モデルを紹介する。また、推定されたパラメータ間の相関を考慮することで動物実験の結果と類似したシミュレーション結果を得るシミュレーターを作成することが可能になると考えられる。様々な理由によって動物実験が困難な薬理学機関でこれらのシミュレーターを使用することで薬理学教育が可能になるだろう。シミュレーターに基づいた教育が将来的に増加することが期待される。
利益相反に関する開示
開示すべき利益相反はありませんダウンロード *前日までの集計結果を表示します
引用文献
Council, N.R. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011.
University of Strathclyde. Strathclyde Pharmacology Simulations. Available online: http://spider.science.strath.ac.uk/sipbs/page.php?page=software_sims (accessed on 28 October 2024).
eGrid Corporation. Pharmaco-PICOS: Pharmacological Practice of Intestine and Cardiovascular Organ Simulator. Available online: https://pharmaco-picos.education (accessed on 28 October 2024).
ERISA. BMP-VR: Basic Medicine Practice-Virtual Reality. Available online: https://jstories.media/article/animal-experiments (accessed on 28 October 2024).
Certara. Simcyp™: PBPK Tech-Driven Services Predict Clinical Outcomes from Virtual Populations. Available online: https://www.certara.com/services/simcyp-pbpk (accessed on 28 October 2024).
Plus, S. PKPlus™ Module Extends GastroPlus®: PBPK & PBBM Modeling Software. Available online: https://www.simulations-plus.com/software/gastroplus/pk-models (accessed on 28 October 2024).
Ara, T.; Kitamura, H. Development of a Predictive Statistical Pharmacological Model for Local Anesthetic Agent Effects with Bayesian Hierarchical Model Parameter Estimation. Medicines 2023, 10, 61.
Ara, T.; Kitamura, H. Improvement of local anesthetics agents’ simulation using Monte Carlo simulation considering correlation among parameters. Biomedinformatics 2024, 1–24.
Ezeala, C.C. Integration of computer-simulated practical exercises into undergraduate medical pharmacology education at Mulungushi University, Zambia. J. Educ. Eval. Health Prof. 2020, 17, 1–9.
Andrews, L.B.; Barta, L. Simulation as a Tool to Illustrate Clinical Pharmacology Concepts to Healthcare Program Learners. Curr. Pharmacol. Rep. 2020, 6, 182–191.
Borghardt, J.M.; Weber, B.; Staab, A.; Kloft, C. Pharmacometric Models for Characterizing the Pharmacokinetics of Orally Inhaled Drugs. AAPS J. 2015, 14, 853–870.
Ara, T. simla-ts (Ver 2.1.0). 2024. Available online: https://toshi-ara.github.io/simla-ts/sim_local_anesthetics.html (accessed on 23 October 2024).
Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 4th ed.; South-Western Cengage Learning: Boston, MA, USA, 2009; Chapter 15.
Iwaya, T.; Tanaka, T. Monte Carlo Simulation and Distribution Characteristics of the Estimates by Probit and Staircase Methods [in Japanese]. J. Soc. Mater. Sci. Jpn. 1990, 39, 914–920.
Ritteri, J.; Flower, R.; Henderson, G.; Loke, Y.K.; MacEwan, D.; Rang, H. Rang & Dale’s Pharmacology, 9th ed.; Elsevier: Amsterdam, The Nederland, 2019.
Brunton, L.; Knollman, B.C. Pharmacological Basis of Therapeutics, 14th ed.; McGraw-Hill Education: New York City, NY, USA, 2022.
Golan, D.E.; Tashjian, A.H., Jr.; Armstrong, E.J.; Armstrong, A.W. Principles of Clinical Pharmacology: The Pathophysiologic Basis of Drug Therapy, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011.
Kawanishi, D.T.; Brinker, J.A.; Reeves, R.; Kay, G.N.; Gross, J.; Pioger, G.; Petitot, J.C.; Esler, A.; Grunkemeier, G. Cumulative Hazard Analysis of J-Wire Fracture in the Accufix Series of Atrial Permanent Pacemaker Leads. Pacing Clin. Electrophysiol. 1998, 21, 2322–2326.
Lord, P.F.; Kapp, D.S.; Hayes, T.; Weshler, Z. Production of systemic hyperthermia in the rat. Eur. J. Cancer Clin. Oncol. 1984, 20, 1079–1085.
Gonsowski, C.T.; Laster, M.J.; Eger, E.I.; Ferrell, L.D.; Kerschmann, R.L. Toxicity of Compound A in Rats: Effect of a 3-Hour Administration. Anesthesiology 1994, 80, 556–565.
Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379.
Li, J.; Shan, X.; Chen, Y.; Xu, C.; Tang, L.; Jiang, H. Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino. Genes 2024, 15, 390.
Anellis, A.; Werkowski, S. Estimation of Radiation Resistance Values of Microorganisms in Food Products. Appl. Microbiol. 1968, 16, 1300–1308.
Little, R.A. Resistance to post-traumatic fluid loss at different ages. Br. J. Exp. Pathol. 1972, 53, 341–346.
Taylor, S.E.; Dorris, R.L. Modification of local anesthetic toxicity by vasoconstrictors. Anesth. Prog. 1989, 36, 79–87.
Verma, S.S.; Gupta, R.K.; Nayar, H.S.; Rai, R.M. Gompertz curve in physiology: An application. Indian J. Physiol. Pharmacol. 1982, 26, 47–53.
Vaghi, C.; Rodallec, A.; Fanciullino, R.; Ciccolini, J.; Mochel, J.P.; Mastri, M.; Ebos, J.M.L.; Benzekry, S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS computational biology. PLoS Comput. Biol. 2020, 16, e1007178.
Ogunrinu, O.J.; Norman, K.N.; Vinasco, J.; Levent, G.; Lawhon, S.D.; Fajt, V.R.; Volkova, V.V.; Gaire, T.; Poole, T.L.; Genovese, K.J.; et al. Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model. PLoS ONE 2020, 15, e0242195.
Phillips, B.F.; Campbell, N.A. A new method of fitting the von Bertalanffy growth curve using data on the whelk Dicathais. Growth 1968, 32, 317–329.
Kühleitner, M.; Brunner, N.; Nowak, W.G.; Renner-Martin, K.; Scheicher, K. Best-fitting growth curves of the von Bertalanffy-Pütter type. Poult. Sci. 2019, 98, 3587–3592.
Kühleitner, M.; Brunner, N.; Nowak, W.G.; Renner-Martin, K.; Scheicher, K. Best fitting tumor growth models of the von Bertalanffy-PütterType. BMC Cancer 2019, 12, 683.
Lee, L.; Atkinson, D.; Hirst, A.G.; Cornell, S.J. A new framework for growth curve fitting based on the von Bertalanffy Growth Function. Sci. Rep. 2020, 10, 7953.
Demirer, R.M.; Kesebir, S. The entropy of chaotic transitions of EEG phase growth in bipolar disorder with lithium carbonate. Sci. Rep. 2021, 11, 11888.
van Hagen, M.A.E.; Ducro, B.J.; van den Broek, J.; Knol, B.W. Incidence, risk factors, and heritability estimates of hind limb lameness caused by hip dysplasia in a birth cohort of boxers. Am. J. Vet. Res. 2005, 66, 307–312.
Kim, J.; Park, Y.R.; Lee, J.H.; Lee, J.H.; Kim, Y.H.; Huh, J.W. Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study. JMIR Med. Inform. 2020, 8, e16349.
Kuurman, W.; Bailey, B.; Koops, W.; Grossman, M. A model for failure of a chicken embryo to survive incubation. Poult. Sci. 2003, 82, 214–222.
Gil-Pozo, A.; Astudillo-Rubio, D.; Cascales, Á.F.; Inchingolo, F.; Hirata, R.; Sauro, S.; Delgado-Gaete, A. Effect of gastric acids on the mechanical properties of conventional and CAD/CAM resin composites - An in-vitro study. J. Mech. Behav. Biomed. Mater. 2024, 155, 106565.
Meng, H.; Xu, Y. Pirfenidone-loaded liposomes for lung targeting: Preparation and in vitro/in vivo evaluation. Drug Des. Dev. Ther. 2015, 2015, 3369–3376.
Falcinelli, S.D.; Kilpatrick, K.W.; Read, J.; Murtagh, R.; Allard, B.; Ghofrani, S.; Kirchherr, J.; James, K.S.; Stuelke, E.; Baker, C.; et al. Longitudinal Dynamics of Intact HIV Proviral DNA and Outgrowth Virus Frequencies in a Cohort of Individuals Receiving Antiretroviral Therapy. J. Infect. Dis. 2020, 224, 92–100.
Verhulst, P.F. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles; Nabu Press: Charleston, SC, USA, 1845; Volume 18, p. 8.
Bliss, C.I. The Method of Probits. Science 1934, 79, 38–39.
Epremian, E.; Mehl, R.F. Investigation of Statistical Nature of Fatigue Properties; National Advisory Committee for Aeronautics: Washington, DC, USA, 1952; Technical Note 2719.
Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115, 513–585.
Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8.
von Bertalanffy, L. Untersuchungen Über die Gesetzlichkeit des Wachstums. I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux Arch. Entwickl. Mech. Org. 1934, 131, 613–652.
Weibull, W. The Statistical Theory of the Strength of Materials. Ingeniors Vetenskaps Academy Handlingar (151); Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939; pp. 1–45.
Rosin, P.; Rammler, E. The Laws Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 29–36.
Yada, S.; Hamada, C. Application of Bayesian hierarchical models for phase I/II clinical trials in oncology. Pharm. Stat. 2017, 16, 114–121.
Fouarge, E.; Monseur, A.; Boulanger, B.; Annoussamy, M.; Seferian, A.M.; Lucia, S.D.; Lilien, C.; Thielemans, L.; Paradis, K.; Cowling, B.S.; et al. Hierarchical Bayesian modelling of disease progression to inform clinical trial design in centronuclear myopathy. Orphanet J. Rare Dis. 2021, 16, 3.
Haber, L.T.; Reichard, J.F.; Henning, A.K.; Dawson, P.; Chinthrajah, R.S.; Sindher, S.B.; Long, A.; Vincent, M.J.; Nadeau, K.C.; Allen, B.C. Bayesian hierarchical evaluation of dose-response for peanut allergy in clinical trial screening. Food Chem. Toxicol. 2021, 151, 112125.
Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Sarantopoulos, J.; Bedard, P.L.; Lin, C.C.; Hodi, F.S.; et al. Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3620–3629.
Gotuzzo, A.G.; Piles, M.; Della-Flora, R.P.; Germano, J.M.; Reis, J.S.; Tyska, D.U.; Dionello, N.J.L. Bayesian hierarchical model for comparison of different nonlinear function and genetic parameter estimates of meat quails. Poult. Sci. 2019, 98, 1601–1609.
Paun, I.; Husmeier, D.; Hopcraft, J.G.C.; Masolele, M.M.; Torney, C.J. Inferring spatially varying animal movement characteristics using a hierarchical continuous-time velocity model. Ecol. Lett. 2022, 25, 2726–2738.
Ramos, A.N.; Fenton, F.H.; Cherry, E.M. Bayesian inference for fitting cardiac models to experiments: Estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation. Med. Biol. Eng. Comput. 2023, 61, 75–95.
Yang, W.; Tempelman, R.J. A Bayesian antedependence model for whole genome prediction. Genetics 2012, 190, 1491–1501.
Selle, M.L.; Steinsland, I.; Lindgren, F.; Brajkovic, V.; Cubric-Curik, V.; Gorjanc, G. Hierarchical Modelling of Haplotype Effects on a Phylogeny. Front. Genet. 2021, 11, 531218.
Mukaddim, R.A.; Meshram, N.H.; Mitchell, C.C.; Varghese, T. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and Vivo Validation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1708–1722.
Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; SPIE Press: Bellingham, WA, 1998; p. 110.
Muller, R. Sequence A007680 in the On-Line Encyclopedia of Integer Sequences (n.d.). Available online: https://oeis.org/A007680 (accessed on 11 November 2024).
Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; The Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1972. Available online: https://personal.math.ubc.ca/~cbm/aands/index.htm (accessed on 9 November 2024).
Carlitz, L. The inverse of the error function. Pac. J. Math. 1963, 13, 459–470.
Toda, H. An Optimal Rational Approximation for Normal deviates for Digital Computers. Bull. Electrotech. Lab. 1967, 31, 1259–1270.
Guennebaud, G.; Jacob, B.; Avery, P.; Bachrach, A.; Barthelemy, S.; Becker, C.; Benjamin, D.; Berger, C.; Blanco, J.L.; Borgerding, M.; et al. Eigen v3. 2010. Available online: http://eigen.tuxfamily.org (accessed on 11 November 2024).
Genz, A.; Bretz, F. Computation of Multivariate Normal and t Probabilities; Lecture Notes in Statistics; Springer: Heidelberg, Germany, 2009.
Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362.
Weissmann, B. Multivariate-Normal (v0.1.2): A Pure-Javascript Port of NumPy’s random.multivariate_normal, for node.js and the Browser. 2023. Available online: https://www.npmjs.com/package/multivariate-normal (accessed on 12 November 2024).
ダウンロード
公開済
投稿日時: 2025-01-24 15:04:55 UTC
公開日時: 2025-01-28 10:16:08 UTC
ライセンス
Copyright(c)2025
荒, 敏昭
喜多村, 洋幸
この作品は、Creative Commons Attribution 4.0 International Licenseの下でライセンスされています。