プレプリント / バージョン1

Curvature Feedback for Repetitive Tissue Morphogenesis – Bridging Algorithmic Principles and Self-Regulatory Systems

##article.authors##

  • Emmanuel Vikran Mechanobiology Institute, National University of Singapore
  • Hirashima, Tsuyoshi Mechanobiology Institute, National University of Singapore

DOI:

https://doi.org/10.51094/jxiv.1055

キーワード:

Curvature sensing、 Mechanobiology、 Morphogenetic motif、 Pattern formation、 Tissue curvature

抄録

Tissue patterning during organ development consists of intricate morphogenetic processes, driven by the interplay of physical and genetic cues among constituent cells. Despite its complexity, these processes can be decomposed into fundamental morphogenetic motifs that appear repeatedly in a spatiotemporally organized manner, giving rise to diverse organ architectures. Recent studies have highlighted tissue-scale curvature as critical information for constitutive cells, which enables it to bridge mechanical and biochemical signals. In this review, we discuss the regulatory principles underlying the roles of tissue curvature in morphogenesis along with recent insights from earlier studies. Here, we focus on the dual role of tissue curvature as an instructive signal that directs collective cell behavior and as a dynamic property modulated by cellular activities. First, we introduce the concept of morphogenetic motifs and provide examples from developmental processes in various organ systems. Next, we discuss how cells collectively respond to two distinct curvature types, lateral and topographical, and examine the mechanisms by which cells sense these curvatures from a mechanobiological perspective. Finally, we highlight the repetitive terminal bifurcation in developing murine lung epithelium, illustrating how curvature-driven feedback loops, mediated through mechano-chemical multicellular couplings, ensure robust morphogenetic cycles. By integrating geometric, mechanical, and chemical cues, curvature feedback emerges as a framework for self-organized morphogenesis, providing fresh perspectives on the recurrent properties and robustness of development.

利益相反に関する開示

The authors declare no competing interests

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

C. Collinet, T. Lecuit, Programmed and self-organized flow of information during morphogenesis, Nat Rev Mol Cell Biol 22 (2021) 245–265. https://doi.org/10.1038/s41580-020-00318-6.

J.A. Davies, Mechanisms of morphogenesis, Third edition, Academic Press, London San Diego Cambridge Oxford, 2023.

Y. Sasai, Cytosystems dynamics in self-organization of tissue architecture, Nature 493 (2013) 318–326. https://doi.org/10.1038/nature11859.

D. Wu, K.M. Yamada, S. Wang, Tissue Morphogenesis Through Dynamic Cell and Matrix Interactions, Annu Rev Cell Dev Biol 39 (2023) 123–144. https://doi.org/10.1146/annurev-cellbio-020223-031019.

S. Camazine, ed., Self-organization in biological systems, 2. print., and 1. paperback print, Princeton Univ. Press, Princeton, NJ, 2003.

S.A. Kauffman, The origins of order: self-organization and selection in evolution, Oxford University Press, New York, 1993.

R. Ramos, B. Swedlund, A.K. Ganesan, L. Morsut, P.K. Maini, E.S. Monuki, A.D. Lander, C.-M. Chuong, M.V. Plikus, Parsing patterns: Emerging roles of tissue self-organization in health and disease, Cell 187 (2024) 3165–3186. https://doi.org/10.1016/j.cell.2024.05.016.

P. Prusinkiewicz, A. Lindenmayer, The algorithmic beauty of plants, Springer-Verlag, New York Berlin Paris [etc.], 1996.

E. Hannezo, C.L.G.J. Scheele, M. Moad, N. Drogo, R. Heer, R.V. Sampogna, J. van Rheenen, B.D. Simons, A Unifying Theory of Branching Morphogenesis, Cell 171 (2017) 242-255.e27. https://doi.org/10.1016/j.cell.2017.08.026.

J.G. Lefevre, K.M. Short, T.O. Lamberton, O. Michos, D. Graf, I.M. Smyth, N.A. Hamilton, Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree, Development 144 (2017) 4377–4385. https://doi.org/10.1242/dev.153874.

R.J. Metzger, O.D. Klein, G.R. Martin, M.A. Krasnow, The branching programme of mouse lung development, Nature 453 (2008) 745–750. https://doi.org/10.1038/nature07005.

M.C. Uçar, D. Kamenev, K. Sunadome, D. Fachet, F. Lallemend, I. Adameyko, S. Hadjab, E. Hannezo, Theory of branching morphogenesis by local interactions and global guidance, Nat Commun 12 (2021) 6830. https://doi.org/10.1038/s41467-021-27135-5.

W. Yu, W.F. Marshall, R.J. Metzger, P.R. Brakeman, L. Morsut, W. Lim, K.E. Mostov, Simple Rules Determine Distinct Patterns of Branching Morphogenesis, Cell Systems 9 (2019) 221–227. https://doi.org/10.1016/j.cels.2019.08.001.

C.M. Nelson, Geometric control of tissue morphogenesis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793 (2009) 903–910. https://doi.org/10.1016/j.bbamcr.2008.12.014.

K.M. Short, A.N. Combes, J. Lefevre, A.L. Ju, K.M. Georgas, T. Lamberton, O. Cairncross, B.A. Rumballe, A.P. McMahon, N.A. Hamilton, I.M. Smyth, M.H. Little, Global Quantification of Tissue Dynamics in the Developing Mouse Kidney, Developmental Cell 29 (2014) 188–202. https://doi.org/10.1016/j.devcel.2014.02.017.

T. Hirashima, Pattern Formation of an Epithelial Tubule by Mechanical Instability during Epididymal Development, Cell Reports 9 (2014) 866–873. https://doi.org/10.1016/j.celrep.2014.09.041.

M. Ishii, T. Tateya, M. Matsuda, T. Hirashima, Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis, eLife 10 (2021) e61092. https://doi.org/10.7554/eLife.61092.

P. Griffiths, ed., Atlas of fetal and postnatal brain MR, Mosby/Elsevier, Philadelphia, PA, 2010.

T. Yoshida, M. Matsuda, T. Hirashima, Incoherent Feedforward Regulation via Sox9 and ERK Underpins Mouse Tracheal Cartilage Development, Front. Cell Dev. Biol. 8 (2020) 585640. https://doi.org/10.3389/fcell.2020.585640.

E. Coen, D.J. Cosgrove, The mechanics of plant morphogenesis, Science 379 (2023) eade8055. https://doi.org/10.1126/science.ade8055.

A. Munjal, E. Hannezo, T.Y.-C. Tsai, T.J. Mitchison, S.G. Megason, Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis, Cell 184 (2021) 6313-6325.e18. https://doi.org/10.1016/j.cell.2021.11.025.

P. Agarwal, R. Zaidel-Bar, Principles of Actomyosin Regulation In Vivo, Trends in Cell Biology 29 (2019) 150–163. https://doi.org/10.1016/j.tcb.2018.09.006.

E. Hannezo, J. Prost, J.-F. Joanny, Theory of epithelial sheet morphology in three dimensions, Proceedings of the National Academy of Sciences 111 (2014) 27–32. https://doi.org/10.1073/pnas.1312076111.

L. LeGoff, T. Lecuit, Mechanical Forces and Growth in Animal Tissues, Cold Spring Harb Perspect Biol 8 (2016) a019232. https://doi.org/10.1101/cshperspect.a019232.

I. Ampartzidis, C. Efstathiou, F. Paonessa, E.M. Thompson, T. Wilson, C.J. McCann, N.DE. Greene, A.J. Copp, F.J. Livesey, N. Elvassore, G.G. Giobbe, P. De Coppi, E. Maniou, G.L. Galea, Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry, Developmental Biology 494 (2023) 60–70. https://doi.org/10.1016/j.ydbio.2022.12.002.

M. Ishii, T. Tateya, M. Matsuda, T. Hirashima, Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea, R. Soc. Open Sci. 8 (2021) 211024. https://doi.org/10.1098/rsos.211024.

T. Watanabe, F. Costantini, Real-time analysis of ureteric bud branching morphogenesis in vitro, Developmental Biology 271 (2004) 98–108. https://doi.org/10.1016/j.ydbio.2004.03.025.

L. Blackie, P. Gaspar, S. Mosleh, O. Lushchak, L. Kong, Y. Jin, A.P. Zielinska, B. Cao, A. Mineo, B. Silva, T. Ameku, S.E. Lim, Y. Mao, L. Prieto-Godino, T. Schoborg, M. Varela, L. Mahadevan, I. Miguel-Aliaga, The sex of organ geometry, Nature 630 (2024) 392–400. https://doi.org/10.1038/s41586-024-07463-4.

H. Kametani, Y. Tong, A. Shimada, H. Takeda, T. Sushida, M. Akiyama, T. Kawanishi, Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish, Cells & Development 180 (2024) 203969. https://doi.org/10.1016/j.cdev.2024.203969.

D.J. Andrew, A.J. Ewald, Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration, Developmental Biology 341 (2010) 34–55. https://doi.org/10.1016/j.ydbio.2009.09.024.

T. Hirashima, Mathematical study on robust tissue pattern formation in growing epididymal tubule, Journal of Theoretical Biology 407 (2016) 71–80. https://doi.org/10.1016/j.jtbi.2016.07.005.

T. Hirashima, T. Adachi, Polarized cellular mechanoresponse system for maintaining radial size in developing epithelial tubes, Development (2019) dev.181206. https://doi.org/10.1242/dev.181206.

K.E. Garcia, C.D. Kroenke, P.V. Bayly, Mechanics of cortical folding: stress, growth and stability, Phil. Trans. R. Soc. B 373 (2018) 20170321. https://doi.org/10.1098/rstb.2017.0321.

T. Tallinen, J.Y. Chung, F. Rousseau, N. Girard, J. Lefèvre, L. Mahadevan, On the growth and form of cortical convolutions, Nature Phys 12 (2016) 588–593. https://doi.org/10.1038/nphys3632.

D. Ambrosi, M. Ben Amar, C.J. Cyron, A. DeSimone, A. Goriely, J.D. Humphrey, E. Kuhl, Growth and remodelling of living tissues: perspectives, challenges and opportunities, Journal of The Royal Society Interface 16 (2019) 20190233. https://doi.org/10.1098/rsif.2019.0233.

C.M. Nelson, On Buckling Morphogenesis, J Biomech Eng 138 (2016) 021005. https://doi.org/10.1115/1.4032128.

A. Trushko, I.D. Meglio, A. Merzouki, C. Blanch-Mercader, S. Abuhattum, J. Guck, K. Alessandri, P. Nassoy, K. Kruse, B. Chopard, A. Roux, Buckling of an Epithelium Growing under Spherical Confinement, Developmental Cell 54 (2020) 655-668.e6. https://doi.org/10.1016/j.devcel.2020.07.019.

K. Ishihara, A. Mukherjee, E. Gromberg, J. Brugués, E.M. Tanaka, F. Jülicher, Topological morphogenesis of neuroepithelial organoids, Nat. Phys. 19 (2023) 177–183. https://doi.org/10.1038/s41567-022-01822-6.

J.-Q. Lv, P.-C. Chen, Y.-P. Chen, H.-Y. Liu, S.-D. Wang, J. Bai, C.-L. Lv, Y. Li, Y. Shao, X.-Q. Feng, B. Li, Active hole formation in epithelioid tissues, Nat. Phys. 20 (2024) 1313–1323. https://doi.org/10.1038/s41567-024-02504-1.

K. Kishimoto, M. Morimoto, Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies, Development 148 (2021) dev198192. https://doi.org/10.1242/dev.198192.

M. Potente, T. Mäkinen, Vascular heterogeneity and specialization in development and disease, Nat Rev Mol Cell Biol 18 (2017) 477–494. https://doi.org/10.1038/nrm.2017.36.

T. Hirashima, M. Hoshuyama, T. Adachi, In vitro tubulogenesis of Madin–Darby canine kidney (MDCK) spheroids occurs depending on constituent cell number and scaffold gel concentration, Journal of Theoretical Biology 435 (2017) 110–115. https://doi.org/10.1016/j.jtbi.2017.09.009.

M. Mukenhirn, C.-H. Wang, T. Guyomar, M.J. Bovyn, M.F. Staddon, R.E. van der Veen, R. Maraspini, L. Lu, C. Martin-Lemaitre, M. Sano, M. Lehmann, T. Hiraiwa, D. Riveline, A. Honigmann, Tight junctions control lumen morphology via hydrostatic pressure and junctional tension, Developmental Cell (2024). https://doi.org/10.1016/j.devcel.2024.07.016.

M. Luciano, C. Tomba, A. Roux, S. Gabriele, How multiscale curvature couples forces to cellular functions, Nat Rev Phys 6 (2024) 246–268. https://doi.org/10.1038/s42254-024-00700-9.

B. Schamberger, R. Ziege, K. Anselme, M. Ben Amar, M. Bykowski, A.P.G. Castro, A. Cipitria, R.A. Coles, R. Dimova, M. Eder, S. Ehrig, L.M. Escudero, M.E. Evans, P.R. Fernandes, P. Fratzl, L. Geris, N. Gierlinger, E. Hannezo, A. Iglič, J.J.K. Kirkensgaard, P. Kollmannsberger, Ł. Kowalewska, N.A. Kurniawan, I. Papantoniou, L. Pieuchot, T.H.V. Pires, L.D. Renner, A.O. Sageman‐Furnas, G.E. Schröder‐Turk, A. Sengupta, V.R. Sharma, A. Tagua, C. Tomba, X. Trepat, S.L. Waters, E.F. Yeo, A. Roschger, C.M. Bidan, J.W.C. Dunlop, Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales, Advanced Materials 35 (2023) 2206110. https://doi.org/10.1002/adma.202206110.

Y. Liu, X. Xue, S. Sun, N. Kobayashi, Y.S. Kim, J. Fu, Morphogenesis beyond in vivo, Nat Rev Phys 6 (2024) 28–44. https://doi.org/10.1038/s42254-023-00669-x.

S.J.P. Callens, R.J.C. Uyttendaele, L.E. Fratila-Apachitei, A.A. Zadpoor, Substrate curvature as a cue to guide spatiotemporal cell and tissue organization, Biomaterials 232 (2020) 119739. https://doi.org/10.1016/j.biomaterials.2019.119739.

M. Hofer, M.P. Lutolf, Engineering organoids, Nat Rev Mater 6 (2021) 402–420. https://doi.org/10.1038/s41578-021-00279-y.

C.M. Nelson, M.M. VanDuijn, J.L. Inman, D.A. Fletcher, M.J. Bissell, Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures, Science 314 (2006) 298–300. https://doi.org/10.1126/science.1131000.

N. Gjorevski, M. Nikolaev, T.E. Brown, O. Mitrofanova, N. Brandenberg, F.W. DelRio, F.M. Yavitt, P. Liberali, K.S. Anseth, M.P. Lutolf, Tissue geometry drives deterministic organoid patterning, Science 375 (2022) eaaw9021. https://doi.org/10.1126/science.aaw9021.

M. Nikolaev, O. Mitrofanova, N. Broguiere, S. Geraldo, D. Dutta, Y. Tabata, B. Elci, N. Brandenberg, I. Kolotuev, N. Gjorevski, H. Clevers, M.P. Lutolf, Homeostatic mini-intestines through scaffold-guided organoid morphogenesis, Nature 585 (2020) 574–578. https://doi.org/10.1038/s41586-020-2724-8.

T. Brandstätter, D.B. Brückner, Y.L. Han, R. Alert, M. Guo, C.P. Broedersz, Curvature induces active velocity waves in rotating spherical tissues, Nat Commun 14 (2023) 1643. https://doi.org/10.1038/s41467-023-37054-2.

W. Tang, A. Das, A.F. Pegoraro, Y.L. Han, J. Huang, D.A. Roberts, H. Yang, J.J. Fredberg, D.N. Kotton, D. Bi, M. Guo, Collective curvature sensing and fluidity in three-dimensional multicellular systems, Nat. Phys. 18 (2022) 1371–1378. https://doi.org/10.1038/s41567-022-01747-0.

W. Xi, S. Sonam, T. Beng Saw, B. Ladoux, C. Teck Lim, Emergent patterns of collective cell migration under tubular confinement, Nat Commun 8 (2017) 1517. https://doi.org/10.1038/s41467-017-01390-x.

Y. Lou, J.-F. Rupprecht, S. Theis, T. Hiraiwa, T.E. Saunders, Curvature-Induced Cell Rearrangements in Biological Tissues, Phys Rev Lett 130 (2023) 108401. https://doi.org/10.1103/PhysRevLett.130.108401.

M.D. Marzio, A. Das, J.J. Fredberg, D. Bi, Epithelial layer fluidization by curvature-induced unjamming, (2024). https://doi.org/10.48550/arXiv.2305.12667.

N.D. Bade, T. Xu, R.D. Kamien, R.K. Assoian, K.J. Stebe, Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration, Biophysical Journal 114 (2018) 1467–1476. https://doi.org/10.1016/j.bpj.2018.01.039.

N.D. Bade, R.D. Kamien, R.K. Assoian, K.J. Stebe, Curvature and Rho activation differentially control the alignment of cells and stress fibers, Sci. Adv. 3 (2017). https://doi.org/10.1126/sciadv.1700150.

L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P.-F. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J.-L. Milan, N. Tusamda Wakhloo, A. Spangenberg, M. Bigerelle, K. Anselme, Curvotaxis directs cell migration through cell-scale curvature landscapes, Nat Commun 9 (2018). https://doi.org/10.1038/s41467-018-06494-6.

P. Rougerie, L. Pieuchot, R.S. Dos Santos, J. Marteau, M. Bigerelle, P.-F. Chauvy, M. Farina, K. Anselme, Topographical curvature is sufficient to control epithelium elongation, Sci Rep 10 (2020). https://doi.org/10.1038/s41598-020-70907-0.

F.A. Maechler, C. Allier, A. Roux, C. Tomba, Curvature dependent constraints drive remodeling of epithelia, Journal of Cell Science (2018) jcs.222372. https://doi.org/10.1242/jcs.222372.

R. Priya, S. Allanki, A. Gentile, S. Mansingh, V. Uribe, H.-M. Maischein, D.Y.R. Stainier, Tension heterogeneity directs form and fate to pattern the myocardial wall, Nature 588 (2020) 130–134. https://doi.org/10.1038/s41586-020-2946-9.

T. Yamashita, P. Kollmannsberger, K. Mawatari, T. Kitamori, V. Vogel, Cell sheet mechanics: How geometrical constraints induce the detachment of cell sheets from concave surfaces, Acta Biomater 45 (2016) 85–97. https://doi.org/10.1016/j.actbio.2016.08.044.

H. Cheng-Kuang, Y. Xianbin, S.D. T, L.C. Teck, Surface curvature and basal hydraulic stress induce spatial bias in cell extrusion, eLife 12 (2023). https://doi.org/10.7554/eLife.84921.

A. Kira, I. Tatsutomi, K. Saito, M. Murata, I. Hattori, H. Kajita, N. Muraki, Y. Oda, S. Satoh, Y. Tsukamoto, S. Kimura, K. Onoue, S. Yonemura, S. Arakawa, H. Kato, T. Hirashima, K. Kawane, Apoptotic extracellular vesicle formation via local phosphatidylserine exposure drives efficient cell extrusion, Developmental Cell (2023) S1534580723002411. https://doi.org/10.1016/j.devcel.2023.05.008.

A. Matamoro-Vidal, R. Levayer, Multiple Influences of Mechanical Forces on Cell Competition, Current Biology 29 (2019) R762–R774. https://doi.org/10.1016/j.cub.2019.06.030.

M. Krajnc, P. Ziherl, Theory of epithelial elasticity, Phys. Rev. E 92 (2015) 052713. https://doi.org/10.1103/PhysRevE.92.052713.

N. Štorgel, M. Krajnc, P. Mrak, J. Štrus, P. Ziherl, Quantitative Morphology of Epithelial Folds, Biophysical Journal 110 (2016) 269–277. https://doi.org/10.1016/j.bpj.2015.11.024.

S.A. Gudipaty, J. Lindblom, P.D. Loftus, M.J. Redd, K. Edes, C.F. Davey, V. Krishnegowda, J. Rosenblatt, Mechanical stretch triggers rapid epithelial cell division through Piezo1, Nature 543 (2017) 118–121. https://doi.org/10.1038/nature21407.

T. Parpaite, B. Coste, Piezo channels, Current Biology 27 (2017) R250–R252. https://doi.org/10.1016/j.cub.2017.01.048.

C. Pardo-Pastor, J. Rosenblatt, Piezo1 activates non-canonical EGFR endocytosis and signaling, bioRxiv, 2022. https://doi.org/10.1101/2022.05.10.490586.

K. Poole, The Diverse Physiological Functions of Mechanically Activated Ion Channels in Mammals, Annual Review of Physiology 84 (2022) 307–329. https://doi.org/10.1146/annurev-physiol-060721-100935.

T. Rosenbaum, L.D. Islas, Molecular Physiology of TRPV Channels: Controversies and Future Challenges, Annu Rev Physiol 85 (2023) 293–316. https://doi.org/10.1146/annurev-physiol-030222-012349.

O. Agam, E. Braun, Universal calcium fluctuations in Hydra morphogenesis, Phys. Biol. 20 (2023) 066002. https://doi.org/10.1088/1478-3975/acf8a4.

S. Blonski, J. Aureille, S. Badawi, D. Zaremba, L. Pernet, A. Grichine, S. Fraboulet, P.M. Korczyk, P. Recho, C. Guilluy, M.E. Dolega, Direction of epithelial folding defines impact of mechanical forces on epithelial state, Developmental Cell 56 (2021) 3222-3234.e6. https://doi.org/10.1016/j.devcel.2021.11.008.

O. Agam, E. Braun, Hydra morphogenesis as phase transition dynamics, EPL 143 (2023) 27001. https://doi.org/10.1209/0295-5075/ace4f0.

F. Crozet, R. Levayer, Emerging roles and mechanisms of ERK pathway mechanosensing, Cell. Mol. Life Sci. 80 (2023) 1–19. https://doi.org/10.1007/s00018-023-05007-z.

T. Hirashima, N. Hino, K. Aoki, M. Matsuda, Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation, Current Opinion in Cell Biology 84 (2023) 102217. https://doi.org/10.1016/j.ceb.2023.102217.

H. Lavoie, J. Gagnon, M. Therrien, ERK signalling: a master regulator of cell behaviour, life and fate, Nat Rev Mol Cell Biol 21 (2020) 607–632. https://doi.org/10.1038/s41580-020-0255-7.

D. Boocock, N. Hino, N. Ruzickova, T. Hirashima, E. Hannezo, Theory of mechanochemical patterning and optimal migration in cell monolayers, Nat. Phys. 17 (2021) 267–274. https://doi.org/10.1038/s41567-020-01037-7.

N. Hino, L. Rossetti, A. Marín-Llauradó, K. Aoki, X. Trepat, M. Matsuda, T. Hirashima, ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization, Developmental Cell 53 (2020) 646-660.e8. https://doi.org/10.1016/j.devcel.2020.05.011.

T. Hirashima, Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development, Biochemical Journal 479 (2022) 129–143. https://doi.org/10.1042/BCJ20210557.

B. Sullivan, T. Light, V. Vu, A. Kapustka, K. Hristova, D. Leckband, Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor–dependent signaling, Proceedings of the National Academy of Sciences 119 (2022) e2100679119. https://doi.org/10.1073/pnas.2100679119.

T. Hirashima, M. Matsuda, ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue, Current Biology 34 (2024) 683-696.e6. https://doi.org/10.1016/j.cub.2023.12.049.

A. Ihermann-Hella, T. Hirashima, J. Kupari, K. Kurtzeborn, H. Li, H.N. Kwon, C. Cebrian, A. Soofi, A. Dapkunas, I. Miinalainen, G.R. Dressler, M. Matsuda, S. Kuure, Dynamic MAPK/ERK Activity Sustains Nephron Progenitors through Niche Regulation and Primes Precursors for Differentiation, Stem Cell Reports 11 (2018) 912–928. https://doi.org/10.1016/j.stemcr.2018.08.012.

A. Elosegui-Artola, I. Andreu, A.E.M. Beedle, A. Lezamiz, M. Uroz, A.J. Kosmalska, R. Oria, J.Z. Kechagia, P. Rico-Lastres, A.-L. Le Roux, C.M. Shanahan, X. Trepat, D. Navajas, S. Garcia-Manyes, P. Roca-Cusachs, Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores, Cell 171 (2017) 1397-1410.e14. https://doi.org/10.1016/j.cell.2017.10.008.

B.C. Heng, X. Zhang, D. Aubel, Y. Bai, X. Li, Y. Wei, M. Fussenegger, X. Deng, An overview of signaling pathways regulating YAP/TAZ activity, Cell Mol Life Sci 78 (2021) 497–512. https://doi.org/10.1007/s00018-020-03579-8.

T. Kawaue, I. Yow, Y. Pan, A.P. Le, Y. Lou, M. Loberas, M. Shagirov, X. Teng, J. Prost, T. Hiraiwa, B. Ladoux, Y. Toyama, Inhomogeneous mechanotransduction defines the spatial pattern of apoptosis-induced compensatory proliferation, Developmental Cell 58 (2023) 267-277.e5. https://doi.org/10.1016/j.devcel.2023.01.005.

G. Peyret, R. Mueller, J. d’Alessandro, S. Begnaud, P. Marcq, R.-M. Mège, J.M. Yeomans, A. Doostmohammadi, B. Ladoux, Sustained Oscillations of Epithelial Cell Sheets, Biophysical Journal 117 (2019) 464–478. https://doi.org/10.1016/j.bpj.2019.06.013.

M. Luciano, S.-L. Xue, W.H. De Vos, L. Redondo-Morata, M. Surin, F. Lafont, E. Hannezo, S. Gabriele, Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation, Nat. Phys. 17 (2021) 1382–1390. https://doi.org/10.1038/s41567-021-01374-1.

K. Goodwin, C.M. Nelson, Branching morphogenesis, Development 147 (2020) dev184499. https://doi.org/10.1242/dev.184499.

V.D. Varner, C.M. Nelson, Cellular and physical mechanisms of branching morphogenesis, Development 141 (2014) 2750–2759. https://doi.org/10.1242/dev.104794.

A.N. Nayak, T. Hirashima, Tug-of-war via ERK signaling pathway for tissue organization – ERK activation to force generation, Current Opinion in Cell Biology 85 (2023) 102249. https://doi.org/10.1016/j.ceb.2023.102249.

S. Tanimura, K. Takeda, ERK signalling as a regulator of cell motility, The Journal of Biochemistry 162 (2017) 145–154. https://doi.org/10.1093/jb/mvx048.

M.C. Mendoza, M. Vilela, J.E. Juarez, J. Blenis, G. Danuser, ERK reinforces actin polymerization to power persistent edge protrusion during motility, Science Signaling 8 (2015) ra47–ra47. https://doi.org/10.1126/scisignal.aaa8859.

S.C. Samson, A.M. Khan, M.C. Mendoza, ERK signaling for cell migration and invasion, Front. Mol. Biosci. 9 (2022) 998475. https://doi.org/10.3389/fmolb.2022.998475.

J.M. Jaslove, K. Goodwin, A. Sundarakrishnan, J.W. Spurlin, S. Mao, A. Košmrlj, C.M. Nelson, Transmural pressure signals through retinoic acid to regulate lung branching, Development 149 (2022) dev199726. https://doi.org/10.1242/dev.199726.

M. Unbekandt, P.-M. del Moral, F.G. Sala, S. Bellusci, D. Warburton, V. Fleury, Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway, Mechanisms of Development 125 (2008) 314–324. https://doi.org/10.1016/j.mod.2007.10.013.

C.J. Chan, T. Hiiragi, Integration of luminal pressure and signalling in tissue self-organization, Development 147 (2020) dev181297. https://doi.org/10.1242/dev.181297.

M. Chugh, A. Munjal, S.G. Megason, Hydrostatic pressure as a driver of cell and tissue morphogenesis, Seminars in Cell & Developmental Biology 131 (2022) 134–145. https://doi.org/10.1016/j.semcdb.2022.04.021.

K. Jiang, Z. Tang, J. Li, F. Wang, N. Tang, Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification, Sci Rep 8 (2018) 14344. https://doi.org/10.1038/s41598-018-32494-z.

D.M. Ornitz, N. Itoh, The Fibroblast Growth Factor signaling pathway, Wiley Interdisciplinary Reviews: Developmental Biology 4 (2015) 215–266. https://doi.org/10.1002/wdev.176.

K. Goodwin, B. Lemma, P. Zhang, A. Boukind, C.M. Nelson, Plasticity in airway smooth muscle differentiation during mouse lung development, Developmental Cell 58 (2023) 338-347.e4. https://doi.org/10.1016/j.devcel.2023.02.002.

H.Y. Kim, M.-F. Pang, V.D. Varner, L. Kojima, E. Miller, D.C. Radisky, C.M. Nelson, Localized Smooth Muscle Differentiation Is Essential for Epithelial Bifurcation during Branching Morphogenesis of the Mammalian Lung, Developmental Cell 34 (2015) 719–726. https://doi.org/10.1016/j.devcel.2015.08.012.

R.E. Young, M.-K. Jones, E.A. Hines, R. Li, Y. Luo, W. Shi, J.M. Verheyden, X. Sun, Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching, Dev Cell 53 (2020) 73-85.e5. https://doi.org/10.1016/j.devcel.2020.02.001.

ダウンロード

公開済


投稿日時: 2025-01-22 21:41:32 UTC

公開日時: 2025-01-28 04:27:59 UTC
研究分野
生物学・生命科学・基礎医学