Prediction of single-mutation effects for fluorescent immunosensor engineering with an end-to-end trained protein language model
DOI:
https://doi.org/10.51094/jxiv.971Keywords:
immunosensor, quenchbody, nanobody, deep learning, protein language modelAbstract
Quenchbody (Q-body) is a fluorophore-labeled homogeneous immunosensor, in which the fluorophore is quenched by tryptophan (Trp) residues in the vicinity of the antigen-binding paratope and de-quenched in response to antigen binding. The development of Q-bodies against targets on demand remains challenging due to the large sequence space of the complementarity-determining regions (CDRs) related to antigen binding and fluorophore quenching. In this study, we pioneered a strategy using high-throughput screening and a protein language model (pLM) to predict the effects of mutations on fluorophore quenching with single amino acid resolution, thereby enhancing the performance of Q-bodies. We collected yeasts displaying nanobodies with high and low quenching properties for TAMRA fluorophore from a modified large synthetic nanobody library, followed by next-generation sequencing. The pre-trained pLM, connected with a single-layer perceptron, was trained end-to-end on the enriched CDR sequences. The achieved quenching prediction model focused on CDR1+3 performed best in evaluation with precision-recall curves. Using this model, we predicted and validated effective mutations in two anti-SARS-CoV-2 nanobodies, RBD1i13 and RBD10i14, that convert them into Q-bodies. For RBD1i13, three Trp mutants were predicted with high probability scores for quenching through in silico Trp scanning. These mutants were verified via yeast surface display to all show enhanced quenching. For RBD10i14, mutations at four positions close to an existing Trp gave high scores through in silico saturation mutagenesis scanning. Six out of eight high-score mutants, derived from two mutants at each of four positions, exhibited deeper quenching on yeast surface. Next, combined with the investigation of antigen binding of the mutants, we successfully achieved Q-bodies with enhanced responses. Overall, our strategy allows for the prediction of fluorescence responses based solely on the sequence of the antibody and will be essential for the rational selection and design of antibodies to achieve immunosensors with larger responses.
Conflicts of Interest Disclosure
B.Z., T.Y., and T.K. received honoraria from HikariQ Health, Inc. for another unrelated project.Downloads *Displays the aggregated results up to the previous day.
References
(1) Renard, M.; Belkadi, L.; Hugo, N.; England, P.; Altschuh, D.; Bedouelle, H., Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J. Mol. Biol. 2002, 318, 429−442.
(2) Brient-Litzler, E.; Pluckthun, A.; Bedouelle, H., Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein. Protein Eng. Des. Sel. 2010, 23, 229−241.
(3) de Picciotto, S.; Dickson, P. M.; Traxlmayr, M. W.; Marques, B. S.; Socher, E.; Zhao, S.; Cheung, S.; Kiefer, J. D.; Wand, A. J.; Griffith, L. G.; Imperiali, B.; Wittrup, K. D., Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. J. Mol. Biol. 2016, 428, 4228−4241.
(4) Abe, R.; Ohashi, H.; Iijima, I.; Ihara, M.; Takagi, H.; Hohsaka, T.; Ueda, H., "Quenchbodies": quench-based antibody probes that show antigen-dependent fluorescence. J Am. Chem. Soc. 2011, 133, 17386−17394.
(5) Inoue, A.; Ohmuro-Matsuyama, Y.; Kitaguchi, T.; Ueda, H., Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sens. 2020, 5, 3457−3464.
(6) Jeong, H. J.; Kawamura, T.; Dong, J. H.; Ueda, H., Q-Bodies from Recombinant Single-Chain Fv Fragment with Better Yield and Expanded Palette of Fluorophores. ACS Sens. 2016, 1, 88−94.
(7) Zhu, B.; Nosaka, N.; Kanamaru, S.; Dong, J.; Dai, Y.; Inoue, A.; Yang, Y.; Kobayashi, K.; Kitaguchi, T.; Iwasaki, H.; Koike, R.; Wakabayashi, K.; Ueda, H., Rapid and sensitive SARS-CoV-2 detection using a homogeneous fluorescent immunosensor Quenchbody with crowding agents. Analyst 2022, 147, 4971−4979.
(8) Yasuda, T.; Inoue, A.; Kitaguchi, T.; Ueda, H., Rapid construction of fluorescence quenching-based immunosensor Q-bodies using alpha-helical coiled-coil peptides. Chem. Commun. 2021, 57, 8206−8209.
(9) Kabat, E. A.; Wu, T. T.; Bilofsky, H., Attempts to Locate Residues in Complementarity-Determining Regions of Antibody Combining Sites That Make Contact with Antigen. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 617−619.
(10) Dong, J.; Ueda, H., Recent Advances in Quenchbody, a Fluorescent Immunosensor. Sensors 2021, 21, 1223.
(11) Jeong, H. J., Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering 2023, 10, 1262.
(12) Ito, Y.; Sasaki, R.; Asari, S.; Yasuda, T.; Ueda, H.; Kitaguchi, T., Efficient Microfluidic Screening Method Using a Fluorescent Immunosensor for Recombinant Protein Secretions. Small 2023, 19, e2207943.
(13) Zhu, B.; Du, Z.; Dai, Y. C.; Kitaguchi, T.; Behrens, S.; Seelig, B., Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets. Biosensors 2023, 13, 768.
(14) Dai, Y. C.; Sato, Y.; Zhu, B.; Kitaguchi, T.; Kimura, H.; Ghadessy, F. J.; Ueda, H., Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022, 13, 9739−9748.
(15) Inoue, A.; Yasuda, T.; Zhu, B.; Kitaguchi, T.; Murakami, A.; Ueda, H., Evaluation and selection of potent fluorescent immunosensors by combining fluorescent peptide and nanobodies displayed on yeast surface. Sci. Rep. 2021, 11, 22590.
(16) Ning, X.; Yasuda, T.; Kitaguchi, T.; Ueda, H., Construction of Fluorescent Immunosensor Quenchbody to Detect His-Tagged Recombinant Proteins Produced in Bioprocess. Sensors 2021, 21, 4993.
(17) Liang, Y. F.; Li, J. D.; Fang, R. Y.; Xu, Z. L.; Luo, L.; Chen, Z. J.; Yang, J. Y.; Shen, Y. D.; Ueda, H.; Hammock, B.; Wang, H., Design of an Antigen-Triggered Nanobody-Based Fluorescence Probe for PET Immunoassay to Detect Quinalphos in Food Samples. Anal. Chem. 2023, 95, 12321−12328.
(18) Dong, J.; Oka, Y.; Jeong, H. J.; Ohmuro-Matsuyama, Y.; Ueda, H., Detection and destruction of HER2-positive cancer cells by Ultra Quenchbody-siRNA complex. Biotechnol. Bioeng. 2020, 117, 1259−1269.
(19) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; Polosukhin, I., Attention Is All You Need. In Advances in Neural Information Processing Systems (Curran Associates, 2017), p 5998−6008.
(20) Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; Bhowmik, D.; Rost, B., ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. Ieee T Pattern Anal 2022, 44, 7112−7127.
(21) Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G. R.; Wang, J.; Cong, Q.; Kinch, L. N.; Schaeffer, R. D.; Millan, C.; Park, H.; Adams, C.; Glassman, C. R.; DeGiovanni, A.; Pereira, J. H.; Rodrigues, A. V.; van Dijk, A. A.; Ebrecht, A. C.; Opperman, D. J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M. K.; Dalwadi, U.; Yip, C. K.; Burke, J. E.; Garcia, K. C.; Grishin, N. V.; Adams, P. D.; Read, R. J.; Baker, D., Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871−876.
(22) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583−589.
(23) Schmirler, R.; Heinzinger, M.; Rost, B., Fine-tuning protein language models boosts predictions across diverse tasks. Nat. Commun. 2024, 15, 7407.
(24) Porebski, B. T.; Balmforth, M.; Browne, G.; Riley, A.; Jamali, K.; Furst, M.; Velic, M.; Buchanan, A.; Minter, R.; Vaughan, T.; Holliger, P., Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat. Biomed. Eng. 2024, 8, 214−232.
(25) McMahon, C.; Baier, A. S.; Pascolutti, R.; Wegrecki, M.; Zheng, S.; Ong, J. X.; Erlandson, S. C.; Hilger, D.; Rasmussen, S. G. F.; Ring, A. M.; Manglik, A.; Kruse, A. C., Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018, 25, 289−296.
(26) Wellner, A.; McMahon, C.; Gilman, M. S. A.; Clements, J. R.; Clark, S.; Nguyen, K. M.; Ho, M. H.; Hu, V. J.; Shin, J. E.; Feldman, J.; Hauser, B. M.; Caradonna, T. M.; Wingler, L. M.; Schmidt, A. G.; Marks, D. S.; Abraham, J.; Kruse, A. C.; Liu, C. C., Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nat. Chem. Biol. 2021, 17, 1057−1064.
(27) Vig, J., A Multiscale Visualization of Attention in the Transformer Model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (Association for Computational Linguistics, 2019), p 37−42.
(28) Marme, N.; Knemeyer, J. P.; Sauer, M.; Wolfrum, J., Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug. Chem. 2003, 14, 1133−1139.
(29) Birtalan, S.; Zhang, Y.; Fellouse, F. A.; Shao, L.; Schaefer, G.; Sidhu, S. S., The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J. Mol. Biol. 2008, 377, 1518−1528.
(30) Tiller, K. E.; Li, L.; Kumar, S.; Julian, M. C.; Garde, S.; Tessier, P. M., Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs. J. Biol. Chem. 2017, 292, 16638−16652.
(31) Kumar, K.; Woo, S. M.; Siu, T.; Cortopassi, W. A.; Duarte, F.; Paton, R. S., Cation-pi interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem Sci 2018, 9, 2655−2665.
(32) Saka, K.; Kakuzaki, T.; Metsugi, S.; Kashiwagi, D.; Yoshida, K.; Wada, M.; Tsunoda, H.; Teramoto, R., Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci. Rep. 2021, 11, 5852.
(33) Li, S.; Meng, X.; Li, R.; Huang, B.; Wang, X., NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model. BMC Bioinformatics 2024, 25, 122.
(34) Benatuil, L.; Perez, J. M.; Belk, J.; Hsieh, C. M., An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng. Des. Sel. 2010, 23, 155−159.
(35) Blankenberg, D.; Gordon, A.; Von Kuster, G.; Coraor, N.; Taylor, J.; Nekrutenko, A.; Galaxy, T., Manipulation of FASTQ data with Galaxy. Bioinformatics 2010, 26, 1783−1785.
(36) Martin, M., Cutadapt removes adapter sequences from high-throughput sequence reads. EMBnet J 2011, 17, 10−12.
(37) Crooks, G. E.; Hon, G.; Chandonia, J. M.; Brenner, S. E., WebLogo: a sequence logo generator. Genome Res. 2004, 14, 1188−1190.
Downloads
Posted
Submitted: 2024-11-24 00:54:19 UTC
Published: 2024-11-25 23:58:27 UTC
License
Copyright (c) 2024
Akihito Inoue
Bo Zhu
Keisuke Mizutani
Ken Kobayashi
Takanobu Yasuda
Alon Wellner
Chang C. Liu
Tetsuya Kitaguchi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.