Tsunami Source Modeling of the Earthquake beneath Hyuganada Sea on 8 August 2024 using Ocean-bottom Pressure Gauge Records of N-net and DONET
DOI:
https://doi.org/10.51094/jxiv.968Keywords:
Nankai Trough, Hyuganada Sea, Tsunami, N-net, DONETAbstract
This study reports the tsunami source modeling of an MJMA 7.1 earthquake which occurred beneath Hyuganada Sea, off Miyazaki, Japan on 8 August 2024, using tsunami waveforms recorded by the recently implemented offshore seafloor observation network called Nankai Trough Seafloor Observation Network for Earthquakes and Tsunamis (N-net) together with the Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) installed in the Nankai Trough subduction zone, off the Pacific coast of southwestern Japan. We first processed the ocean-bottom pressure gauge data from the N-net offshore system and DONET to extract tsunamis, which showed the tsunamis up to a few centimeters were clearly recorded. The station NAE18 of N-net, nearest to the epicenter, observed the pressure offset change corresponding to the permanent seafloor vertical uplift of approximately 5 cm. We then forwardly simulated tsunamis based on centroid moment tensor solutions and finite fault models of the previous studies, indicating the good observation performance of the N-net ocean-bottom pressure gauges. We finally conducted the inversion analysis of the tsunami waveforms to estimate the tsunami source distribution, which extends in a dimension of approximately 40 km × 20 km along the strike and dip directions, respectively. From the comparison with the past studies, the rupture area of the 2024 earthquake was likely to overlapped with the southern half of the rupture area of the MJMA 7.0 earthquake in 1961, while the rupture areas of the MJMA 6.7 and 6.9 earthquakes in 1996 seemed separated from the 2024 event. This study demonstrates that the use of the near-field tsunami waveforms from N-net significantly enhanced the constraint on tsunami source estimation as well as the finite fault modeling off the coast of the western part of the Nankai Trough subduction zone. N-net also have the potential to improve the tsunami monitoring and prompt evaluation for the "Nankai Trough Earthquake Extra Information."
Conflicts of Interest Disclosure
There is no conflict of interest associated with this manuscript.Downloads *Displays the aggregated results up to the previous day.
References
Aoi, S., Y. Asano, T. Kunugi, T. Kimura, K. Uehira, N. Takahashi, and H. Ueda, 2020, MOWLAS: NIED observation network for earthquake, tsunami and volcano, Earth Planets Space 72, 126, doi:10.1186/s40623-020-01250-x.
Aoi, S., T. Takeda, T. Kunugi, M. Shinohara, T. Miyoshi, K. Uehira and N. Takahashi, 2023, Development and construction of Nankai trough seafloor observation network for earthquakes and tsunami: N-net, 2023 IEEE Underwater Technology, doi:10.1109/UT49729.2023.10103206.
Blewitt G., W. C. Hammond, and C. Kreemer, 2018, Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, doi:10.1029/2018EO104623.
防災科学技術研究所, 2019, 防災科研DONET, 防災科研機関リポジトリ, doi:10.17598/nied.0008.
防災科学技術研究所, 2024, 防災科研N-net, 防災科研機関リポジトリ, doi:10.17598/nied.0029.
Ekström G., M. Nettles, and A. M. Dziewoński, 2012, The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth. Planet. Inter. 200–201,1–9, doi:10.1016/j.pepi.2012.04.002.
福山英一・石田瑞穂・Douglas S. Dreger・川井啓廉, 1998, オンライン広帯域地震データを用いた完全自動メカニズム決定, 地震2, 51, 149–156, doi:10.4294/zisin1948.51.1_149.
Goldstein P., D. Dodge, M. Firpo, and L. Minner, 2003, SAC2000: Signal processing and analysis tools for seismologists and engineers, in “International Handbook of Earthquake and Engineering Seismology”, ed. by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Academic Press, 81, 1613–1614, doi:10.1016/S0074-6142(03)80284-X.
Hatori, T., 1969, A study of the wave sources of the Hiuganada tsunamis. Bull. Earthq. Res. Inst., 47, 55–63, doi:10.15083/0000033387.
羽鳥徳太郎, 1998, 1996年日向灘津波と九州東部域の放出津波エネルギー分布, 津波工学研究報告, 15, 43–50.
Hirose, F., J. Nakajima, and A. Hasegawa, 2008, Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography, J. Geophys. Res., 113, B09315, doi:10.1029/2007JB005274.
Houston, M. H., and J. M. Paros, 1998, High accuracy pressure instrumentation for underwater applications, Proc. 1998 Int. Symp. Underwater Technol., 307–311, doi:10.1109/UT.1998.670113.
Ishibashi, K., 2004, Status of historical seismology in Japan, Ann. Geophys., 47, 339–368, doi:10.4401/ag-3305.
Itoh, Y., 2024, Coseismic slip and afterslip of the 2024 Hyuganada earthquake modulated by subducted seamount, EarthArXiv, doi:10.31223/X5Z11T.
地震調査研究推進本部, 2001, 南海トラフの地震の長期評価について, <https://www.jishin.go.jp/main/chousa/kaikou_pdf/nankai.pdf>, (参照 2024-11-01).
地震調査研究推進本部, 2013, 南海トラフの地震活動の長期評価(第二版)について, <https://www.jishin.go.jp/main/chousa/kaikou_pdf/nankai_2.pdf>, (参照 2024-11-01).
地震調査研究推進本部, 2024, 2024年8月8日 日向灘の地震の評価, <https://www.static.jishin.go.jp/resource/monthly/2024/20240808_hyuganada_2.pdf>, (参照 2024-11-01).
Kaneda, Y., K. Kawaguchi, E. Araki, H. Matsumoto, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Hori, T. Baba, and N. Takahashi, 2015, Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis, in “Seafloor Observatories: A new vision of the Earth from the Abyss”, ed. by P. Favali, L. Beranzoli, and A. De Santis, Springer, 643–662, doi:10.1007/978-3-642-11374-1_25.
Kawaguchi, K., S. Kaneko, T. Nishida, and T. Komine, 2015, Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring, in “Seafloor Observatories: A new vision of the Earth from the Abyss”, ed. by P. Favali, L. Beranzoli, and A. De Santis, Springer, 211–228, doi:10.1007/978-3-642-11374-1_10.
Kim, S.B., T. Saito, T. Kubota, and S.-J. Chang, 2023, Joint inversion of ocean-bottom pressure and GNSS data from the 2003 Tokachi-oki earthquake, Earth Planets Space, 75, 113, doi:10.1186/s40623-023-01864-x.
気象庁, 1961, 日向灘地震調査報告, 験震時報, 26, 81–107.
気象庁, 1996, 1996 年10月19 日の日向灘の地震(M6.6), 地震予知連絡会会報, 57, 644–659, <https://cais.gsi.go.jp/YOCHIREN/report/kaihou57/09-07.pdf>, (参照 2024-11-01).
気象庁, 1997, 1996 年12月3日の日向灘の地震(M6.6), 地震予知連絡会会報, 58, 619–622, <https://cais.gsi.go.jp/YOCHIREN/report/kaihou58/09-08.pdf>, (参照 2024-11-01).
気象庁, 2024a, 令和6年8月8日16時43分頃の日向灘の地震について, <https://www.jma.go.jp/jma/press/2408/08b/202408081745.html>, (参照 2024-11-01).
気象庁, 2024b, 令和6年8月8日16時43分頃の日向灘の地震について(第2報)及び南海トラフ地震関連解説情報(第1号)について, <https://www.jma.go.jp/jma/press/2408/09a/202408091530.html>, (参照 2024-11-01).
気象庁, 2024c, 2024年8月8日日向灘の地震—遠地実体波による震源過程解析(暫定)—, <https://www.data.jma.go.jp/eqev/data/sourceprocess/event/2024080816425559far.pdf>, (参照 2024-11-01).
気象庁, 2024d, 2024年8月8日日向灘の地震—近地強震波形による震源過程解析(暫定)—, <https://www.data.jma.go.jp/eqev/data/sourceprocess/event/2024080816425559near.pdf>, (参照 2024-11-01).
気象庁, 2024e, 南海トラフ地震臨時情報(巨大地震注意)について, <https://www.jma.go.jp/jma/press/2408/08e/202408081945.html >, (参照 2024-11-01).
国土地理院, 2024, 令和6年(2024年)宮崎県日向灘を震源とする地震に関する情報, <https://www.gsi.go.jp/BOUSAI/20240808_hyuganada_earthquake_00001.html#6>, (参照 2024-11-01).
Kubo, H. and Y. Kakehi, 2013, Source process of the 2011 Tohoku earthquake estimated from the joint inversion of teleseismic body waves and geodetic data including seafloor observation data: source model with enhanced reliability by using objectively determined inversion settings, Bull. Seismol. Soc. Am., 103, 2B, 1195–1220, doi:10.1785/0120120113.
Kubo, H., T. Kubota, W. Suzuki, and T. Nakamura, 2023, On the use of tsunami‑source data for high‑resolution fault imaging of offshore earthquakes. Earth Planets Space 75, 125, doi:10.1186/s40623-023-01878-5.
Kubota, T., T. Saito, Y. Ito, Y. Kaneko, L. M. Wallace, S. Suzuki, R. Hino, and S. Henrys, 2018, Using tsunami waves reflected at the coast to improve offshore earthquake source parameters: Application to the 2016 Mw 7.1 Te Araroa earthquake, New Zealand, J. Geophys. Res. Solid Earth, 123, 8767–8779, doi:10.1029/2018JB015832.
Kubota, T., H. Kubo, K. Yoshida, N. Y. Chikasada, W. Suzuki, T. Nakamura, and H. Tsushima, 2021, Improving the constraint on the Mw 7.1 2016 off-Fukushima shallow normal-faulting earthquake with the high azimuthal coverage tsunami data from the S-net wide and dense network: Implication for the stress regime in the Tohoku overriding plate. J. Geophys. Res. Solid Earth, 126, e2021JB022223, doi:10.1029/2021JB02223.
Kubota, T., 2024, Tsunami source model of the earthquake beneath Hyuganada Sea on 8 August 2024 estimated using ocean-bottom pressure gauge records of N-net and DONET, Zenodo, doi:10.5281/zenodo.14020781
Loveless, J.P. and B. J. Meade, 2010, Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, J. Geophys. Res., 115, B02410, doi:10.1029/2008JB006248.
Loveless, J. P. and B. J. Meade, 2011, Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW = 9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 38, L17306, doi:10.1029/2011GL048561.
NOAA National Centers for Environmental Information, 2022, ETOPO 2022 15 arc-second global relief model, NOAA National Centers for Environmental Information, doi:10.25921/fd45-gt74.
野田隆一郎・大町敏彦・吉田隆司・岩井滋人・篠原雅尚・青井真・功刀卓・武田哲也, 2023, 高精度な海底圧力観測におけるシリコン振動式圧力センサの有効性, SSS12-P06, 日本地球惑星科学連合2023年大会, <https://confit.atlas.jp/guide/event/jpgu2023/subject/SSS12-P06/detail>, (参照 2024-11-01).
Okada, Y., 1992, Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040, doi:10.1785/BSSA0820021018.
Shinohara, M., S. Aoi, M. Mochizuki, K. Uehira, T. Yamada, T. Kunugi, T. Takeda, R. Noda, and S. Iwai, 2022, Field evaluation of new silicon resonant sensor using MEMS technology for ocean bottom pressure observation, NH22C-0432, AGU Fall Meeting 2022, <https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1086215>, (参照 2024-11-01).
篠原雅尚・青井真・望月将志・植平賢司・山田知朗・功刀卓・武田哲也・野田隆一郎・岩井滋人, 2023, MEMS技術を用いた新しいシリコン振動式圧力センサの性能評価海底観測, SSS12-P07, 日本地球惑星科学連合2023年大会, <https://confit.atlas.jp/guide/event/jpgu2023/subject/SSS12-P07/detail>, (参照 2024-11-01).
Tamura Y., T. Sato, M. Ooe, and M. Ishiguro, 1991, A procedure for tidal analysis with a Bayesian information criterion, Geophys. J. Int., 104, 507–516, doi:10.1111/j.1365-246X.1991.tb05697.x.
Tamura Y., and D. C. Agnew, 2008, Baytap08 user's manual, UC San Diego: Scripps Institution of Oceanography, <https://escholarship.org/uc/item/4c27740c>, (参照 2024-11-01).
Tsushima, H., R. Hino, Y. Tanioka, F. Imamura, and H. Fujimoto, 2012, Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting, J. Geophys. Res., 117, B03311, doi:10.1029/2011JB008877.
U.S. Geological Survey, 2024, M 7.1 - 2024 Hyuganada Sea, Japan Earthquake, <https://earthquake.usgs.gov/earthquakes/eventpage/us6000nith/executive>, (参照 2024-11-01).
Wells D. and K. Coppersmith, 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974–1002, doi:10.1785/BSSA0840040974.
Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith, and D. Tian, 2019, The generic Mapping tools version 6, Geochem. Geophys. Geosyst., 20, 5556–5564, doi:10.1029/2019GC008515.
Yagi, Y., M. Kikuchi, S. Yoshida, and T. Sagiya, 1999, Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquake of 1996, Geophys. Res. Lett., 26, 3161–3164, doi:10.1029/1999GL005340.
Yamamoto, Y., K. Obana, T. Takahashi, A. Nakanishi, S. Kodaira, and Y. Kaneda, 2013, Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone, Tectonophysics, 589, 90-102, doi:10.1016/j.tecto.2012.12.028.
Zhang, X., Li, S., and Chen, L., 2024, Failure of a deep asperity in Hyuga-nada, Japan: The August 8, 2024 Mw 7.1 subduction zone earthquake [Preprint], ESS Open Archive, doi:10.22541/essoar.172748272.20491481/v1.
Downloads
Posted
Submitted: 2024-11-22 03:07:06 UTC
Published: 2024-11-28 01:56:25 UTC
License
Copyright (c) 2024
Tatsuya Kubota
Hisahiko Kubo
Takayuki Miyoshi
Wataru Suzuki
Shin Aoi
Takashi Kunugi
Tetsuya Takeda
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.