Preprint / Version 1

Tutorial: Outlier-Robust Neural Network Training

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.928

Keywords:

Neural Network, Robust Estimation, Trimmed Loss, Higher-Order Variation Regularization

Abstract

本稿は外れ値にロバストなニューラルネットの学習に関する我々のプレプリント Okuno and Yagishita (2024) に関する解説です.解説の平易さを優先するため,厳密な記述については当該プレプリントをご参照ください.

Conflicts of Interest Disclosure

No conflict of interest.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Okuno, A. and Yagishita, S. (2024). Outlier-robust neural network training: Efficient optimization of transformed trimmed loss with variation regularization. arXiv preprint arXiv:2308.02293.

Robbins, H. and Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3):400–407.

Yagishita, S. (2024). Fast algorithm for sparse least trimmed squares via trimmed-regularized reformulation. arXiv preprint arXiv:2410.04554.

Posted


Submitted: 2024-10-10 10:46:07 UTC

Published: 2024-10-18 00:31:56 UTC
Section
Information Sciences