Non vanishing of Hecke L values
DOI:
https://doi.org/10.51094/jxiv.902Keywords:
Hecke L-valus, Mordel-Weil rankAbstract
Following the research by Rohrich and Lamplugh, the non-vanishing of -values has been extensively studied. In Theorem A, we extend Lamplugh's results on -values obtained for imaginary quadratic fields to CM fields. The key ingredient is the equivariant cohomology class on Poincare sheaf, the so-called Eisenstein-Kronecker class constructed by G. Kings and J. Sprang in 2019. This allows us to connect the transcendence of formal functions to the study of -values. In Theorem B, assuming the BSD conjecture, we show that in a suitable multiple Zl extension , the Z-module X(J)/X(J)tors of a CM-type abelian variety X with good ordinary reduction at all primes above is a finitely generated Z-module. This is an immediate consequence of Theorem A.
Conflicts of Interest Disclosure
The authors declare no conflicts of interest associated with this manuscriptDownloads *Displays the aggregated results up to the previous day.
References
Aurelirn Galateau, Cesar Martien, "A bound for the torsion on subvariety of abelian varieties", 2017, Arxiv.
P.Deligne, Cohomologie a supports propers, expose XVII of SGA 4, Theorie de topos et Cohomologie etale des Schemas, Tome 3, Springer Verlag, Berlin 1973, p250-480, Lecture Note in Math, Vol 269.
P.Deligne, "Values of L-functions and Periods of Integrals", on seminar website. Translation
of P. Deligne, "Valeurs de Fonctions L et périodes d’intégrales", Proceedings of Symposia in Pure
Math. 33, 1979, Part 2, 313-346.
Ehud de Shalit, "The Iwasawa Theory of Elliptic Curves with Complex Multiplication", 1987
M. Hazewinkel, “FORMAL GROUPS AND APPLICATIONS", AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island ΑΓΕΩΜΕΕΙΣΙΤΩ ΤΡΗΤΟΣ ΜΗ FOUNDED 1888, AMERICAN MATHEMATICAL SOCIETY
http://dx.doi.org/10.1090/chel/375.H
Mathematics Subject Classification. Primary 14L05; Secondary 16Txx, 05Exx,
Fxx, 11Sxx, 12Fxx, 13F35, 55N22.
H. Hida, Non-vanishing modulo p of Hecke L–values, in: “Geometric
Aspects of Dwork’s Theory, II” (edited by Alan Adolphson, Francesco
Baldassarri, Pierre Berthelot, Nicholas Katz, and Francois Loeser), Walter
de Gruyter, 2004, pp. 735–784
H.Hida, "$p$ adic automorphic forms on Shimura varieties",
Springer Monographs in Mathematics (SMM).
E. Hrushovski, “The Manin-Mumford conjecture and the model theory of difference fields”. Ann. Pure Appl. Logic 112 (2001), no. 1.
K. Bannai and S. Kobayashi, Algebraic theta functions and p-adic interpolation of
Eisenstein-Kronecker numbers, preprint, arXiv:math.NT/0610163v2, 2007.
K.Bannai, S.Kobayashi, H.Furusho, p-adic Eisenstein-Kronecker series for CM elliptic curves and the Kronecker limit formulas, Nagoya Math. J. 219 (2015), 269-302.
K. Bannai, S. Kobayashi, and T. Tsuji, On the real Hodge and p-adic realizations of the
Elliptic Polylogarithm for CM elliptic curves, preprint 2007, arXiv:0711.1701v1 [math.NT]
Kings, Sprang, "Eisenstein-Kronecker classes, integrality of critical values of Hecke $L$-functions and $p$-adic interpolation", 2024,Arxiv.
N. M. Katz, "p-adic L-functions for CM fields", Invent. Math., 49, 199–297 (1978).
A.Lei, D.Kundu "non-vanishing modulo p of Hecke L value over imaginary quadratic fields", 2023, Arxiv.
J.Lamplugh, "An analogue of the Washington–Sinnott theorem for elliptic curves with complex multiplication I",
J. London Math. Soc. 91 (2015), no. 3, 609–642G.
Laumon, “Transformation de Fourier generalisee”, arxiv:9603004, 1996.
Qing Liu, "Algebraic geometry and Arithmetic curves", 2008, Oxford University press.
M. McQuillan, Division points on semi-abelian varieties, Invent. Math. 120 (1995), no. 1,
–159
T.Ochiai, T.Hara, "The cyclotomic Iwasawa main conjecture for Hilbert cusp forms with complex multiplications", 2015, Arxiv.
N. Roby, Lois polynomes et lois formelles en theorie des modules, An. Sci. Ecole. Norm. Sup(1963), no80, 213-248.
D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75, 409–423 (1984).
M.Raynaud, Sous-variétés d’une variété abélienne et points de torsion, Prog. Math. 35 (1983),
–352.
L. Schneps, “On the μ-invariant of p-adic L-functions attached to elliptic curves with complex
multiplication", J. Number Theory 25 (1987) 20–33.
G.Shimura, “Introduction to the arithmetic theory of automorphic functions", 1971,
Kanô Memorial Lectures, No. 1.
Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J.
G.Shimura, Y.Taniyama, AMA, "Complex multiplication of abelian varieties and its applications
to number theory", Publ. Math. Soc. Japan No. 6, 1961.
Warren M. Sinnott, Γ-transforms of rational function measures on ZS, Invent. Math. 89 (1987), no. 1,
–157
J.Tate, "p-divisible group", roc. Conf. Local Fields (Driebergen, 1966), 158–183, Springer, Berlin, 1967.
A. Polishchuk , “Abelian Varieties, Theta Functions and the Fourier Transform”. Cambridge University Press; 2003.
S. Yasuda. Explicit t-expansions for the elliptic curve E : $y^2 = 4(x^3 +Ax+B)$. Proc. Japan Acad.
Ser. A Math Sci., 89(9):123–127, 2013.
Umberto Zannier. Some problems of unlikely intersections in arithmetic and geometry, volume 181 of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2012. With appendixes by
David Masser.
Downloads
Posted
Submitted: 2024-09-11 10:31:37 UTC
Published: 2024-11-25 23:54:34 UTC
License
Copyright (c) 2024
Takuya Tanaka
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.