Preprint / Version 1

Calculation of structural information of bridges using 3D point clouds

##article.authors##

  • Kenta Itakura ImVisionLabs Inc.
  • Takuya Hayashi ImVisionLabs Inc.
  • Chao Lin Institute of Engineering Innovation, School of Engineering,the University of Tokyo
  • Yuto Kamiwaki ImVisionLabs Inc.
  • Pang-jo Chun Institute of Engineering Innovation, School of Engineering,the University of Tokyo

DOI:

https://doi.org/10.51094/jxiv.901

Keywords:

Automatic measurement, Bridge, Image processing, LiDAR, point cloud processing

Abstract

In this study, we examined a method to automatically calculate the structural information of bridges using point cloud data measured with the Matterport Pro3. We calculated the dimensions of railings, decks, and main girders and evaluated their accuracy. The point clouds were pre-annotated, and this information was utilized during processing. The length of the railings was estimated by projecting the point cloud onto a 2D image from a top-down view and using image processing techniques. The RMSE was 0.289 m, suggesting a possible error of about 5cm. The length and width of the deck were compared using principal component analysis and ellipse fitting, with RMSEs of 0.10 m and 0.50 m, respectively. Additionally, we attempted to detect the intersections of the main girders, but estimating the position of intersections was difficult in areas with missing data. Future work should aim for more accurate estimation by combining the method with automatic point cloud classification using deep learning.

Conflicts of Interest Disclosure

The authors declare no conflicts of interest associated with this manuscript.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

辻井純平,合田哲朗,中野雅章:土木構造物の点群解析に向けた局所形状の畳み込みを伴う深層学習手法の適用,AI・データサイエンス論文集,4巻3号,pp. 442-450,2023.

米山睦美,髙見澤拓哉,眞部達也,田尻大介:鉄筋結束マシンに取り付けたカメラ動画から生成した点群による配筋検査への実用性検証,AI・データサイエンス論文集,5巻1号,pp. 239-244,2024.

藤原圭哉,佐藤誠,山下千智,黒田直樹,亀田敏弘:3Dデータと河床変動解析を活用した河川分野におけるデジタルツインの実現に向けての提案,AI・データサイエンス論文集,5巻1号,pp. 126-133,2024.

山下淳子, 木村沙智, 川村日成: 3 次元点群データを活用したインフラ構造物の維持管理. 精密工学会誌, Vol, 85, No. 3, pp. 228-231, 2019.

Itakura, K., Hosoi, F.: Estimation of tree structure parameters from video frames with removal of blurred images using machine learning. J. Agri. Meteorol., No. 74, Vol. 4, 154-161, 2018.

Kamiwaki, Y., Fukuda, S.: A machine learning-assisted three-dimensional image analysis for weight estimation of radish, Horticult., Vol.10, No.2, 2024.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis, Commun. ACM, Vol. 65, No. 1, pp. 99-106, 2021.

Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering, ACM Trans. Graph., Vol. 42, No. 4, pp. 139-1, 2023.

Romero-Jarén, R., Arranz, J. J.: Automatic segmentation and classification of BIM elements from point clouds, Autom. Constr., Vol. 124, pp. 103576, 2021.

稲富翔伍, 全邦釘: 点群の画像化とディープラーニングを用いた橋梁点群のセグメンテーション, AI・データサイエンス論文集, Vol. 2, No. 2, pp. 418-427, 2021.

Lu, R., Brilakis, I., Middleton, C. R.: Detection of structural components in point clouds of existing RC bridges, Comput.-Aided Civ. Infrastruct. Eng., Vol. 34, No. 3, pp. 191-212, 2019.

Pan, Y., Dong, Y., Wang, D., Chen, A., Ye, Z.: Three-dimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds, Remote Sens., Vol. 11, No. 10, pp. 1204, 2019.

Qi, C. R., Su, H., Mo, K., Guibas, L. J.: PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR, pp. 652-660, 2017.

Qi, C. R., Yi, L., Su, H., Guibas, L. J.: PointNet++: Deep hierarchical feature learning on point sets in a metric space, NeurIPS, Vol. 30, 2017.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on X-transformed points, Adv. Neural Inf. Process. Syst., Vol. 31, 2018.

Phan, A. V., Le Nguyen, M., Nguyen, Y. L. H., Bui, L. T.: DGCNN: A convolutional neural network over large-scale labeled graphs, Neural Networks, Vol. 108, pp. 533-543, 2018.

板倉 健太, 林 拓哉, 上脇 優人, 全 邦釘: LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去, 土木学会 AI・データサイエンス論文集, 受理済み.

板倉 健太, 林 拓哉, 上脇 優人, 全 邦釘: セマンティックセグメンテーションやセンサーフュージョンを利用した橋梁の構造情報の推定のための点群処理手法の開発, 土木学会 AI・データサイエンス論文集, 受理済み.

Chun, P. J., Kikuta, T.: Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation, Comput.-Aided Civ. Infrastruct. Eng., 2024.

Deng, L., Yuan, H., Long, L., Chun, P. J., Chen, W., Chu, H.: Cascade refinement extraction network with active boundary loss for segmentation of concrete cracks from high-resolution images, Autom. Constr., Vol. 162, pp. 105410, 2024.

Chu, H., and Chun, P. J.: Fine-grained crack segmentation for high‐resolution images via a multiscale cascaded network. Comput. Aided Civ. Infra. Eng., Vol. 39, No.4, pp. 575-594, 2024.

Hattori, K., Oki, K., Sugita, A., Sugiyama, T., Chun, P. J.: Deep learning-based corrosion inspection of long-span bridges with BIM integration, Heliyon, 2024.

Yamane, T., Chun, P. J., Honda, R.: Detecting and localising damage based on image recognition and structure from motion, and reflecting it in a 3D bridge model, Struct. Infrastruct. Eng., Vol. 20, No. 4, pp. 594-606, 2024.

Schütz, M., Ohrhallinger, S., Wimmer, M.: Fast out‐of‐core octree generation for massive point clouds, Comput. Graph. Forum, Vol. 39, No. 7, pp. 155-167, 2020.

github, potree Desktop:

https://github.com/potree/PotreeDesktop

(最終アクセス日2024年8月28日)

Lam, L., Lee, S.-W., Suen, C. Y.: Thinning methodologies—a comprehensive survey, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 9, pp. 869-885, 1992.

Fischler, M. A., Bolles, R. C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, Vol. 24, No. 6, pp. 381-395, 1981.

Itakura, K., and Hosoi, F.: Three-dimensional tree monitoring in urban cities using automatic tree detection method with mobile LiDAR data, AI Data Sci., Vol. 2, Issue 2, pp. 1-10, 2021.

Itakura, K., Miyatani, S., and Hosoi, F.: Estimating tree structural parameters via automatic tree segmentation from LiDAR point cloud data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 15, pp. 555-564, 2021.

Chun, P. J., Chu, H., Shitara, K., Yamane, T., Maemura, Y.: Implementation of explanatory texts output for bridge damage in a bridge inspection web system, Adv. Eng. Softw., Vol. 195, pp. 103706, 2024.

Posted


Submitted: 2024-09-11 07:40:06 UTC

Published: 2024-09-13 00:46:44 UTC
Section
Architecture & Civil Engineering