Preprint / Version 1

A simple genotyping method for RIM15 gene polymorphisms in sake yeast strains

##article.authors##

  • Takashi Kuribayashi Niigata Prefectural Sake Research Institute / Faculty of Food Industry, Niigata Agro-Food University https://researchmap.jp/takashi-kuribayashi
  • Nanako Asahi Faculty of Food Industry, Niigata Agro-Food University
  • Hina Satone Faculty of Food Industry, Niigata Agro-Food University
  • Jumpei Tanaka Niigata Prefectural Sake Research Institute
  • Masamichi Sugawara Niigata Prefectural Sake Research Institute
  • Keigo Sato Niigata Prefectural Sake Research Institute
  • Yoshihito Nabekura Niigata Prefectural Sake Research Institute
  • Toshio Joh Faculty of Agriculture, Niigata University
  • Toshio Aoki Niigata Prefectural Sake Research Institute

DOI:

https://doi.org/10.51094/jxiv.868

Keywords:

polymerase chain reaction-restriction fragment length polymorphism, RIM15, Saccharomyces cerevisiae

Abstract

In the process of brewing sake, Saccharomyces cerevisiae not only synthesizes numerous flavor compounds but also produces alcohol, which enhances fermentation efficiency. A previous study identified a sake yeast mutant with a single-nucleotide insertion in the RIM15 protein kinase gene (RIM15 with an insertion of adenine at position 5067: RIM15ins5067A). In this study, we developed primer sets (P1/P2) with engineered mismatches that introduce restriction sites for the restriction enzyme CpsCI. This allowed us to create a simple and rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay to identify Kyokai no. 7 (K7) group sake yeast strains carrying the RIM15ins5067A mutation. We validated the PCR-RFLP method in detecting the RIM15ins5067A mutation in the K7 group of yeast strains. This approach provides a straightforward, effective, and valuable tool for distinguishing specific yeasts used in sake production.

Conflicts of Interest Disclosure

The authors declare no conflict of interest. All the experiments undertaken in this study complied with the current laws of the country in which they were performed.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Akao, T., Zhou, Y., Watanabe, D., Okazaki, N., & Shimoi, H. (2018). Development of DNA markers to differentiate good Kyokai sake yeast and other yeast strains. Journal of the Brewing Society of Japan, 113(10), 631–641. doi:10.6013/jbrewsocjapan.113.631.

Azumi, M., & Goto-Yamamoto, N. (2001). AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast, 18(12), 1145–1154. doi:10.1002/yea.767.

Hatakeyama, A., Watanabe, Y., Arimoto, K., Kuribayashi, T., Hara, T., & Joh, T. (2020). Screening and characterization of a house yeast strain for sake brewing using the loop-mediated isothermal amplification method. Journal of the Brewing Society of Japan, 115(9), 537–544. doi:10.6013/jbrewsocjapan.115.537.

Kuribayashi, T., Sakurai, T., Hatakeyama, A., Joh, T., & Kaneoke, M. (2022). Genotypic analysis of the FAS2-F1279Y (3836T> A) polymorphism conferring high ethyl caprylate productivity in industrial sake yeast strains. Journal of General and Applied Microbiology, 68(5), 248–252. doi:10.2323/jgam.2022.05.001.

Kuribayashi, T., Sato, K., Kasai, D., Fukuda, M., Kaneoke, M., & Watanabe, K. I. (2014). Differentiation of industrial sake yeast strains by a loop-mediated isothermal amplification method that targets the PHO3 gene. Journal of bioscience and bioengineering, 118(6), 661-664. doi:10.1016/j.jbiosc.2014.05.019

Takao, Y., Takahashi, T., Yamada, T., Goshima, T., Isogai, A., Sueno, K., Fujii, T., & Akao, T. (2018). Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. Journal of Bioscience and Bioengineering, 126(5), 617–623. doi:10.1016/j.jbiosc.2018.05.008.

Tanaka, J., Sugawara, M., Kuribayashi, T., Sato, K., Nabekura, Y., & Aoki, T. (2023). Study on improvement of Niigata sake yeast -Isolation of a no-urea-producing sake yeast with high ethyl caproate productivity-. Quest for Traditional Food, 50, 55–60.

Watanabe, D., Araki, Y., Zhou, Y., Maeya, N., Akao, T., & Shimoi, H. (2012). A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Applied and Environmental Microbiology, 78(11), 4008–4016. doi:10.1128/AEM.00165-12.

Watanabe, D. (2012). How has sake yeast acquired high alcohol fermentation ability ? KAGAKU TO SEIBUTSU, 50(10), 723–729. doi:10.1271/kagakutoseibutsu.50.723.

Watanabe, D., & Takagi, H. (2016). RIM15, a kyokai sake yeast-specific mutated gene associated with the high alcoholic fermentation performance. Journal of the Brewing Society of Japan, 111(10), 638–647. doi:10.6013/jbrewsocjapan.111.638.

Yoshizawa, K. (1999). Sake: production and flavor. Food Reviews International, 15(1), 83–107. doi:10.1080/87559129909541178.

Zhang, R., Zhu, Z., Zhu, H., Nguyen, T., Yao, F., Xia, K., Liang, D., & Liu, C. (2005). SNP Cutter: a comprehensive tool for SNP PCR–RFLP assay design. Nucleic acids research, 33(suppl_2), W489-W492. doi:10.1093/nar/gki358.

Downloads

Posted


Submitted: 2024-08-29 12:24:45 UTC

Published: 2024-09-03 02:22:20 UTC
Section
Agriculture & Food Sciences