This is an outdated version published on 2024-08-23 06:20:01 UTC. Read the most recent version.
Preprint / Version 1

Methyl syringate mono-glucoside is a crucial intermediate in leptosperin biosynthesis in Leptospermum scoparium (manuka)

##article.authors##

  • Yoji Kato University of Hyogo, School of Human Science and Environment https://researchmap.jp/read0056569
  • Yuka Furutani University of Hyogo, School of Human Science and Environment
  • Hayato Nakai University of Hyogo, School of Human Science and Environment
  • Emi Takaoka University of Hyogo, School of Human Science and Environment
  • Emiri Kamizato University of Hyogo, School of Human Science and Environment
  • Toshio Niwa Shubun University, Faculty of Health and Nutrition

DOI:

https://doi.org/10.51094/jxiv.856

Keywords:

Mānuka honey, Leptosperin, Leptospermum scoparium, Methyl syringate glucosides, Biosynthesis, Certification

Abstract

Leptosperin (methyl syringate-4-O-β-D-gentiobioside) serves as a unique marker for mānuka honey, derived from the manuka plant (Leptospermum scoparium). Despite its importance, the biosynthesis pathway of leptosperin remains unreported. This study investigates the molecular mechanism of leptosperin formation from its aglycone, methyl syringate (MSYR), in manuka plants. Methyl syringate-4-O-β-D-glucopyranoside (MSYR-glucose) was identified in manuka flower nectar but not in mānuka honey. MSYR was distributed in the flowers, leaves, branches, and roots of manuka plants, while MSYR-glucose and leptosperin were only observed in the flowers. By immersing a cut flowering branch in a deuterium-labeled aqueous medium, the formation of deuterated leptosperin (leptosperin-d6) and MSYR-glucose (MSYR-d6-glucose) was analyzed. When MSYR-d6 was added, both MSYR-d6-glucose and leptosperin-d6 were detected. Supplementation with synthetic MSYR-d6-glucose also generated leptosperin-d6, indicating that gentiobioside moiety in leptosperin forms through the conjugation of MSYR with D-glucose, followed by the addition of another D-glucose.

Conflicts of Interest Disclosure

The authors report no conflicts of interest related to this study.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

(1) Bong, J.; Loomes, K. M.; Lin, B.; Stephens, J. M., New approach: Chemical and fluorescence profiling of NZ honeys. Food Chem 2018, 267, 355-367, 10.1016/j.foodchem.2017.07.065.

(2) Bong, J.; Prijic, G.; Braggins, T. J.; Schlothauer, R. C.; Stephens, J. M.; Loomes, K. M., Leptosperin is a distinct and detectable fluorophore in Leptospermum honeys. Food Chem 2017, 214, 102-109, 10.1016/j.foodchem.2016.07.018.

(3) McDonald, C. M.; Keeling, S. E.; Brewer, M. J.; Hathaway, S. C., Using chemical and DNA marker analysis to authenticate a high-value food, manuka honey. npj Science of Food 2018, 2, 9, 10.1038/s41538-018-0016-6.

(4) Díaz-Galiano, F. J.; Heinzen, H.; Gómez-Ramos, M. J.; Murcia-Morales, M.; Fernández-Alba, A. R., Identification of novel unique mānuka honey markers using high-resolution mass spectrometry-based metabolomics. Talanta 2023, 260, 124647, 10.1016/j.talanta.2023.124647.

(5) Killeen, D. P.; Larsen, L.; Dayan, F. E.; Gordon, K. C.; Perry, N. B.; van Klink, J. W., Nortriketones: Antimicrobial trimethylated acylphloroglucinols from manuka (Leptospermum scoparium). J Nat Prod 2016, 79, 564-569, 10.1021/acs.jnatprod.5b00968.

(6) Kato, Y.; Fujinaka, R.; Ishisaka, A.; Nitta, Y.; Kitamoto, N.; Takimoto, Y., Plausible authentication of manuka honey and related products by measuring leptosperin with methyl syringate. J Agric Food Chem 2014, 62, 6400-6407, 10.1021/jf501475h.

(7) Kato, Y.; Umeda, N.; Maeda, A.; Matsumoto, D.; Kitamoto, N.; Kikuzaki, H., Identification of a novel glycoside, leptosin, as a chemical marker of manuka honey. J Agric Food Chem 2012, 60, 3418-3423, 10.1021/jf300068w.

(8) Kato, Y.; Kishi, Y.; Okano, Y.; Kawai, M.; Shimizu, M.; Suga, N.; Yakemoto, C.; Kato, M.; Nagata, A.; Miyoshi, N., Methylglyoxal binds to amines in honey matrix and 2'-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Food Chem 2021, 337, 127789, 10.1016/j.foodchem.2020.127789.

(9) Bong, J.; Loomes, K. M.; Schlothauer, R. C.; Stephens, J. M., Fluorescence markers in some New Zealand honeys. Food Chem. 2016, 192, 1006-1014, 10.1016/j.foodchem.2015.07.118.

(10) Kato, Y.; Araki, Y.; Juri, M.; Fujinaka, R.; Ishisaka, A.; Kitamoto, N.; Nitta, Y.; Niwa, T.; Takimoto, Y., Immunochemical authentication of manuka honey using a monoclonal antibody specific to a glycoside of methyl syringate. J Agric Food Chem 2014, 62, 10672-10678, 10.1021/jf503464a.

(11) Kato, Y.; Araki, Y.; Juri, M.; Ishisaka, A.; Nitta, Y.; Niwa, T.; Kitamoto, N.; Takimoto, Y., Competitive immunochromatographic assay for leptosperin as a plausible authentication marker of manuka honey. Food Chem 2016, 194, 362-365, 10.1016/j.foodchem.2015.08.040.

(12) Ishisaka, A.; Ikushiro, S.; Takeuchi, M.; Araki, Y.; Juri, M.; Yoshiki, Y.; Kawai, Y.; Niwa, T.; Kitamoto, N.; Sakaki, T.; Ishikawa, H.; Kato, Y., In vivo absorption and metabolism of leptosperin and methyl syringate, abundantly present in manuka honey. Mol Nutr Food Res 2017, 61, 10.1002/mnfr.201700122.

(13) Kato, Y.; Kawai, M.; Kawai, S.; Okano, Y.; Rokkaku, N.; Ishisaka, A.; Murota, K.; Nakamura, T.; Nakamura, Y.; Ikushiro, S., Dynamics of the cellular metabolism of leptosperin found in manuka honey. J Agric Food Chem 2019, 67, 10853-10862, 10.1021/acs.jafc.9b03894.

(14) Smallfield, B. M.; Joyce, N. I.; van Klink, J. W., Developmental and compositional changes in Leptospermum scoparium nectar and their relevance to mānuka honey bioactives and markers. N Z J Bot 2018, 56, 183-197, 10.1080/0028825X.2018.1446450.

(15) Clearwater, M. J.; Noe, S. T.; Manley-Harris, M.; Truman, G. L.; Gardyne, S.; Murray, J.; Obeng-Darko, S. A.; Richardson, S. J., Nectary photosynthesis contributes to the production of manuka (Leptospermum scoparium) floral nectar. New Phytol 2021, 232, 1703-1717, 10.1111/nph.17632.

(16) Grierson, E. R. P.; Thrimawithana, A. H.; van Klink, J. W.; Lewis, D. H.; Carvajal, I.; Shiller, J.; Miller, P.; Deroles, S. C.; Clearwater, M. J.; Davies, K. M.; Chagné, D.; Schwinn, K. E., A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). New Phytologist 2024, 242, 2270-2284, 10.1111/nph.19714.

(17) Aitken, H. M. R.; Johannes, M.; Loomes, K. M.; Brimble, M. A., Synthesis of leptosin, a glycoside isolated from mānuka honey. Tetrahedron Lett 2013, 54, 6916-6919, dx.doi.org/10.1016/j.tetlet.2013.10.042.

(18) Mohri, K.; Watanabe, Y.; Yoshida, Y.; Satoh, M.; Isobe, K.; Sugimoto, N.; Tsuda, Y., Synthesis of glycosylcurcuminoids. Chem Pharm Bull 2003, 51, 1268-1272, 10.1248/cpb.51.1268.

(19) Fujimatu, E.; Ishikawa, T.; Kitajima, J., Aromatic compound glucosides, alkyl glucoside and glucide from the fruit of anise. Phytochemistry 2003, 63, 609-616, S0031942203001791 [pii].

(20) Takiura, K.; Honda, S.; Endo, T.; Kakehi, K., Studies of oligosaccharides. IX. Synthesis of gentiooligosaccharides by block condensation. Chem Pharm Bull 1972, 20, 438-442, 10.1248/cpb.20.438.

(21) Adams, C. J.; Manley-Harris, M.; Molan, P. C., The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 2009, 344, 1050-1053, 10.1016/j.carres.2009.03.020.

(22) Atrott, J.; Henle, T., Methylglyoxal in manuka honey – Correlation with antibacterial properties. Czech J. Food Sci 2009, 27, S163-S165,

(23) Ross, J.; Li, Y.; Lim, E.; Bowles, D. J., Higher plant glycosyltransferases. Genome Biol 2001, 2, Reviews3004, 10.1186/gb-2001-2-2-reviews3004.

(24) Zhang, P.; Zhang, Z.; Zhang, L.; Wang, J.; Wu, C., Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 2020, 18, 1383-1390, 10.1016/j.csbj.2020.06.003.

(25) Masada, S.; Terasaka, K.; Oguchi, Y.; Okazaki, S.; Mizushima, T.; Mizukami, H., Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus. Plant Cell Physiol 2009, 50, 1401-1415, 10.1093/pcp/pcp088.

(26) Oguchi, Y.; Masada, S.; Kondo, T.; Terasaka, K.; Mizukami, H., Purification and characterization of UDP-glucose : curcumin glucoside 1,6-glucosyltransferase from Catharanthus roseus cell suspension cultures. Plant Cell Physiol 2007, 48, 1635-1643, 10.1093/pcp/pcm138.

(27) Thrimawithana, A. H.; Jones, D.; Hilario, E.; Grierson, E.; Ngo, H. M.; Liachko, I.; Sullivan, S.; Bilton, T. P.; Jacobs, J. M. E.; Bicknell, R.; David, C.; Deng, C.; Nieuwenhuizen, N.; Lopez-Girona, E.; Tobias, P. A.; Morgan, E.; Perry, N. B.; Lewis, D. H.; Crowhurst, R.; Davies, K. M.; Chagné, D.; Schwinn, K. E., A whole genome assembly of Leptospermum scoparium (Myrtaceae) for mānuka research. N Z J Crop Hortic Sci 2019, 47, 233-260, 10.1080/01140671.2019.1657911.

(28) Elamine, Y.; Lyoussi, B.; Miguel, M. G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J., Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem 2021, 339, 128098, 10.1016/j.foodchem.2020.128098.

(29) Tuberoso, C. I.; Bifulco, E.; Jerkovic, I.; Caboni, P.; Cabras, P.; Floris, I., Methyl syringate: a chemical marker of asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey. J Agric Food Chem 2009, 57, 3895-3900, 10.1021/jf803991j.

Downloads

Posted


Submitted: 2024-08-21 07:38:21 UTC

Published: 2024-08-23 06:20:01 UTC

Versions

Reason(s) for revision

Section
Agriculture & Food Sciences