Preprint / Version 2

Geospatial analysis of disease transmission and genetic diversity

##article.authors##

  • Raj Rajeshwar Malinda PGD in Data Science, Health and Climate Change for Social Impact, Indraprastha Institute of Information Technology Delhi

DOI:

https://doi.org/10.51094/jxiv.779

Keywords:

Geospatial, genetics, genomics, disease transmission, public health

Abstract

This article discusses key studies to highlight the importance of geospatial analysis with genome sequencing data to provide significant insights into the transmission of infectious disease in low-income countries. It further explores how geographical-based analysis can help to identify issues of imbalance in historical data collection, processing and sharing on public databases. In summary, it emphasize the significance of integrating geospatial analysis with data-driven genetic and genomic studies, to understand disease transmission, and to understand health perspectives in developing nations for better infrastructure.

Conflicts of Interest Disclosure

The author declares no conflicts of interest.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Anderson, B., Ouyang, D., D’Agostino, A., Bonin, B., Smith, E., Kraushaar, V., Rudman, S. L., & Ho, D. E. (2023). Leveraging genomic sequencing data to evaluate disease surveillance strategies. IScience, 26(12). https://doi.org/10.1016/j.isci.2023.108488

Azzopardi, P. S., Kerr, J. A., Francis, K. L., Sawyer, S. M., Kennedy, E. C., Steer, A. C., Graham, S. M., Viner, R. M., Ward, J. L., Hennegan, J., Pham, M. D., Habito, C. M. D., Kurji, J., Cini, K. I., Beeson, J. G., Brown, A., Murray, C. J. L., Abbasi-Kangevari, M., Abolhassani, H., … Patton, G. C. (2023). The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990–2019: a systematic analysis of the Global Burden of Disease Study 2019. The Lancet, 402(10398). https://doi.org/10.1016/S0140-6736(23)00860-7

Baker, C. R., Barilar, I., de Araujo, L. S., Rimoin, A. W., Parker, D. M., Boyd, R., Tobias, J. L., Moonan, P. K., Click, E. S., Finlay, A., Oeltmann, J. E., Minin, V. N., Modongo, C., Zetola, N. M., Niemann, S., & Shin, S. S. (2023). Use of High-Resolution Geospatial and Genomic Data to Characterize Recent Tuberculosis Transmission, Botswana. Emerging Infectious Diseases, 29(5). https://doi.org/10.3201/eid2905.220796

Best, S., Vidic, N., An, K., Collins, F., & White, S. M. (2022). A systematic review of geographical inequities for accessing clinical genomic and genetic services for non-cancer related rare disease. In European Journal of Human Genetics (Vol. 30, Issue 6). https://doi.org/10.1038/s41431-021-01022-5

Chen, Z., Lemey, P., & Yu, H. (2024). Approaches and challenges to inferring the geographical source of infectious disease outbreaks using genomic data. In The Lancet Microbe (Vol. 5, Issue 1). https://doi.org/10.1016/S2666-5247(23)00296-3

Fatumo, S., Chikowore, T., Choudhury, A., Ayub, M., Martin, A. R., & Kuchenbaecker, K. (2022). Diversity in Genomic Studies: A Roadmap to Address the Imbalance. Nature Medicine, 28, 243–250. https://doi.org/10.1038/s41591-021-01672-4

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. In Nature Reviews Genetics (Vol. 17, Issue 6). https://doi.org/10.1038/nrg.2016.49

Levin, A. T., Owusu-Boaitey, N., Pugh, S., Fosdick, B. K., Zwi, A. B., Malani, A., Soman, S., Besançon, L., Kashnitsky, I., Ganesh, S., McLaughlin, A., Song, G., Uhm, R., Herrera-Esposito, D., De Los Campos, G., Peçanha Antonio, A. C. P., Tadese, E. B., & Meyerowitz-Katz, G. (2022). Assessing the burden of COVID-19 in developing countries: Systematic review, meta-Analysis and public policy implications. In BMJ Global Health (Vol. 7, Issue 5). https://doi.org/10.1136/bmjgh-2022-008477

Malinda, R. R. (2022). Clinical management approaches in Bardet–Biedl syndrome. In European Journal of Human Genetics (Vol. 30, Issue 11). https://doi.org/10.1038/s41431-022-01187-7

Peng, X., Li, Q., Cheng, Z., & Huang, X. (2023). The geography of genetic data: Current status and future perspectives. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1112636

Richardson, D. B., Volkow, N. D., Kwan, M. P., Kaplan, R. M., Goodchild, M. F., & Croyle, R. T. (2013). Spatial turn in health research. In Science (Vol. 339, Issue 6126). https://doi.org/10.1126/science.1232257

Schootman, M., Gomez, S. L., Henry, K. A., Paskett, E. D., Ellison, G. L., Oh, A., Taplin, S. H., Tatalovich, Z., & Berrigan, D. A. (2017). Geospatial approaches to cancer control and population sciences. Cancer Epidemiology Biomarkers and Prevention, 26(4). https://doi.org/10.1158/1055-9965.EPI-17-0104

Shaweno, D., Trauer, J. M., Doan, T. N., Denholm, J. T., & McBryde, E. S. (2021). Geospatial clustering and modelling provide policy guidance to distribute funding for active TB case finding in Ethiopia. Epidemics, 36. https://doi.org/10.1016/j.epidem.2021.100470

Shrestha, S., Reja, M., Gomes, I., Baik, Y., Pennington, J., Islam, S., Faisel, A. J., Cordon, O., Roy, T., Suarez, P. G., Hussain, H., & Dowdy, D. W. (2021). Quantifying geographic heterogeneity in TB incidence and the potential impact of geographically targeted interventions in South and North City Corporations of Dhaka, Bangladesh: a model-based study. Epidemiology and Infection, 149. https://doi.org/10.1017/S0950268821000832

Smith, J. P., Oeltmann, J. E., Hill, A. N., Tobias, J. L., Boyd, R., Click, E. S., Finlay, A., Mondongo, C., Zetola, N. M., & Moonan, P. K. (2022). Characterizing tuberculosis transmission dynamics in high-burden urban and rural settings. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10488-2

Thong, M. K., See-Toh, Y., Hassan, J., & Ali, J. (2018). Medical genetics in developing countries in the Asia-Pacific region: challenges and opportunities. In Genetics in Medicine (Vol. 20, Issue 10). https://doi.org/10.1038/s41436-018-0135-0

Toczydlowski, R. H., Liggins, L., Gaither, M. R., Anderson, T. J., Barton, R. L., Berg, J. T., Beskid, S. G., Davis, B., Delgado, A., Farrell, E., Ghoojaei, M., Himmelsbach, N., Holmes, A. E., Queeno, S. R., Trinh, T., Weyand, C. A., Bradburd, G. S., Riginos, C., Toonen, R. J., & Crandall, E. D. (2021). Poor data stewardship will hinder global genetic diversity surveillance. Proceedings of the National Academy of Sciences of the United States of America, 118(34). https://doi.org/10.1073/pnas.2107934118

Downloads

Posted


Submitted: 2024-06-26 09:15:19 UTC

Published: 2024-07-03 09:12:19 UTC — Updated on 2025-12-18 02:15:48 UTC

Versions

Reason(s) for revision

The revision contains an updated abstract highlighting the key ideas of the article. In addition, the layout has been restructured for better readability, and some typos have been fixed.
Section
Biology, Life Sciences & Basic Medicine