This preprint has been published.
DOI: https://doi.org/10.1021/acssensors.4c01800
Preprint / Version 1

BRET Nano Q-body: A Nanobody-Based Ratiometric Bioluminescent Immunosensor for Point-of-Care Testing

##article.authors##

  • Yang, Yinghui Graduate School of Life Science and Technology, Tokyo Institute of Technology
  • Inoue, Akihito Graduate School of Life Science and Technology, Tokyo Institute of Technology
  • Yasuda, Takanobu Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
  • Ueda, Hiroshi Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
  • Zhu, Bo Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
  • Kitaguchi, Tetsuya Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology

DOI:

https://doi.org/10.51094/jxiv.763

Keywords:

immunosensor, BRET, Quenchbody, nanobody, point-of-care testing

Abstract

We developed a nanobody-based homogeneous bioluminescent immunosensor whose emission color changes by the bioluminescence resonance energy transfer (BRET) upon antigen addition to realize the one-pot analysis for point-of-care testing (POCT) and named it BRET nano Q-body. The NanoLuc luciferase and a cysteine-containing tag were fused to the N-terminal of the nanobody, which was subsequently labeled with fluorescent dye through a thiol-maleimide reaction. The nanobody employed in this proof-of-principle experiment recognizes methotrexate (MTX), a chemotherapy agent for cancer treatment. The BRET nano Q-body after fluorescent dye and linker optimization exhibited a more than 8-fold increase in emission ratio (TAMRA/Nluc) in a dose-dependent manner. We also found that its superior thermostability, endurance in organic solvents, reducing agents and detergents due to the robust structure of nanobody, as well as accommodation in biological fluids such as milk, serum, and whole blood without dilution, with limits of detection of 0.5, 1.6, and 3.7 nM, respectively. Furthermore, we performed lyophilization on BRET nano Q-body and made it into the paper device, greatly improving portability and allowing more than one month of storage in 25 ℃. The paper device also functioned properly in the aforementioned biological fluids without dilution and can be applied to therapeutic drug monitoring of MTX on site. We provided a powerful tool, BRET nano Q-body for POCT, and demonstrated its applicability in several biological fluids and the feasibility of paper devices, which is greatly expected as the pioneer for in situ detection in therapeutic, diagnostic, and environmental applications.

Conflicts of Interest Disclosure

T.Y., H.U., B.Z. and T.K. received honoraria from HikariQ Health, Inc. for another unrelated project.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

(1) Wang, M.; Shu, J.; Wang, Y.; Zhang, W.; Zheng, K.; Zhou, S.; Yang, D.; Cui, H. Ultrasensitive PD-L1-Expressing Exosome Immunosensors Based on a Chemiluminescent Nickel–Cobalt Hydroxide Nanoflower for Diagnosis and Classification of Lung Adenocarcinoma. ACS Sens. 2024. https://doi.org/10.1021/acssensors.4c00954.

(2) Quintero-Campos, P.; Segovia-de los Santos, P.; Ibáñez-Echevarria, E.; Hernández-Fernández de Rojas, D.; Casino, P.; Lassabe, G.; González-Sapienza, G.; Maquieira, Á.; Morais, S. An Ultra-Sensitive Homologous Chemiluminescence Immunoassay to Tackle Penicillin Allergy. Anal. Chim. Acta 2022, 1214, 339940. https://doi.org/10.1016/j.aca.2022.339940.

(3) Eissa, S.; Zourob, M. Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Anal. Chem. 2021, 93 (3), 1826–1833. https://doi.org/10.1021/acs.analchem.0c04719.

(4) Xie, X.; Yang, X.; Zhang, Y.; Mao, F.; He, Z.; Sun, Z.; Zhang, S.; Liu, X. Ready-to-Use Ratiometric Bioluminescence Immunosensor for Detection of Ochratoxin a in Pepper. Biosens. Bioelectron. 2024, 259, 116401. https://doi.org/10.1016/j.bios.2024.116401.

(5) He, Y.; Wang, H.; Yu, Z.; Tang, X.; Zhou, M.; Guo, Y.; Xiong, B. A Disposable Immunosensor Array Using Cellulose Paper Assembled Chemiresistive Biosensor for Simultaneous Monitoring of Mycotoxins AFB1 and FB1. Talanta 2024, 276, 126145. https://doi.org/10.1016/j.talanta.2024.126145.

(6) Zhu, L.; Dong, X.-X.; Gao, C.-B.; Gai, Z.; He, Y.-X.; Qian, Z.-J.; Liu, Y.; Lei, H.-T.; Sun, Y.-M.; Xu, Z.-L. Development of a Highly Sensitive and Selective Electrochemical Immunosensor for Controlling of Rhodamine B Abuse in Food Samples. Food Control 2022, 133, 108662. https://doi.org/10.1016/j.foodcont.2021.108662.

(7) Zhang, Y.-Y.; Li, L.-H.; Wang, Y.; Wang, H.; Xu, Z.-L.; Tian, Y.-X.; Sun, Y.-M.; Yang, J.-Y.; Shen, Y.-D. Ultrasensitive and Rapid Colorimetric Detection of Paraquat via a High Specific VHH Nanobody. Biosens. Bioelectron. 2022, 205, 114089. https://doi.org/10.1016/j.bios.2022.114089.

(8) Zhang, L.; Dong, H.; Li, H.; Li, B.; Zhao, G.; Cai, H.; Chen, L.; Dong, J. Novel Signal-on Immunosensors for Rapid and Sensitive Detection of Microcystin-LR. Microchem. J. 2021, 167, 106295. https://doi.org/10.1016/j.microc.2021.106295.

(9) Messaoud, N. B.; dos Santos, M. B.; Vieira, A.; Garrido-Maestu, A.; Espiña, B.; Queirós, R. B. A Novel Portable Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Aeromonas Salmonicida in Aquaculture Seawater. Anal. Bioanal. Chem. 2022, 414 (22), 6591–6600. https://doi.org/10.1007/s00216-022-04219-9.

(10) Abe, R.; Ohashi, H.; Iijima, I.; Ihara, M.; Takagi, H.; Hohsaka, T.; Ueda, H. “Quenchbodies”: Quench-Based Antibody Probes That Show Antigen-Dependent Fluorescence. J. Am. Chem. Soc. 2011, 133 (43), 17386–17394. https://doi.org/10.1021/ja205925j.

(11) Sasao, A.; Takaki, M.; Jeong, H.-J.; Yonemitsu, K.; Ohtsu, Y.; Tsutsumi, H.; Furukawa, S.; Morioka, H.; Ueda, H.; Nishitani, Y. Development of a Fluvoxamine Detection System Using a Quenchbody, a Novel Fluorescent Biosensor. Drug Test. Anal. 2019, 11 (4), 601–609. https://doi.org/10.1002/dta.2520.

(12) Abe, R.; Jeong, H.-J.; Arakawa, D.; Dong, J.; Ohashi, H.; Kaigome, R.; Saiki, F.; Yamane, K.; Takagi, H.; Ueda, H. Ultra Q-Bodies: Quench-Based Antibody Probes That Utilize Dye-Dye Interactions with Enhanced Antigen-Dependent Fluorescence. Sci. Rep. 2015, 4 (1), 4640. https://doi.org/10.1038/srep04640.

(13) Dai, Y.; Sato, Y.; Zhu, B.; Kitaguchi, T.; Kimura, H.; Ghadessy, F. J.; Ueda, H. Intra Q-Body: an Antibody-Based Fluorogenic Probe for Intracellular Proteins That Allows Live Cell Imaging and Sorting. Chem. Sci. 2022, 13 (33), 9739–9748. https://doi.org/10.1039/D2SC02355E.

(14) Inoue, A.; Ohmuro-Matsuyama, Y.; Kitaguchi, T.; Ueda, H. Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-Body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sens. 2020, 5 (11), 3457–3464. https://doi.org/10.1021/acssensors.0c01404.

(15) Inoue, A.; Yasuda, T.; Zhu, B.; Kitaguchi, T.; Murakami, A.; Ueda, H. Evaluation and Selection of Potent Fluorescent Immunosensors by Combining Fluorescent Peptide and Nanobodies Displayed on Yeast Surface. Sci. Rep. 2021, 11 (1), 22590. https://doi.org/10.1038/s41598-021-02022-7.

(16) Qawee Rani, A.; Zhu, B.; Ueda, H.; Kitaguchi, T. Recent Progress in Homogeneous Immunosensors Based on Fluorescence or Bioluminescence Using Antibody Engineering. Analyst 2023, 148 (7), 1422–1429. https://doi.org/10.1039/D2AN01913B.

(17) Ni, Y.; Rosier, B. J. H. M.; van Aalen, E. A.; Hanckmann, E. T. L.; Biewenga, L.; Pistikou, A.-M. M.; Timmermans, B.; Vu, C.; Roos, S.; Arts, R.; Li, W.; de Greef, T. F. A.; van Borren, M. M. G. J.; van Kuppeveld, F. J. M.; Bosch, B.-J.; Merkx, M. A Plug-and-Play Platform of Ratiometric Bioluminescent Sensors for Homogeneous Immunoassays. Nat. Commun. 2021, 12 (1), 4586. https://doi.org/10.1038/s41467-021-24874-3.

(18) Takahashi, R.; Yasuda, T.; Ohmuro-Matsuyama, Y.; Ueda, H. BRET Q-Body: a Ratiometric Quench-Based Bioluminescent Immunosensor Made of Luciferase–Dye–Antibody Fusion with Enhanced Response. Anal. Chem. 2021, 93 (21), 7571–7578. https://doi.org/10.1021/acs.analchem.0c05217.

(19) Xue, L.; Yu, Q.; Griss, R.; Schena, A.; Johnsson, K. Bioluminescent Antibodies for Point-of-Care Diagnostics. Angew. Chem. 2017, 129 (25), 7218–7222. https://doi.org/10.1002/ange.201702403.

(20) Hall, M. P.; Kincaid, V. A.; Jost, E. A.; Smith, T. P.; Hurst, R.; Forsyth, S. K.; Fitzgerald, C.; Ressler, V. T.; Zimmermann, K.; Lazar, D.; Wood, M. G.; Wood, K. V.; Kirkland, T. A.; Encell, L. P.; Machleidt, T.; Dart, M. L. Toward a Point-of-Need Bioluminescence-Based Immunoassay Utilizing a Complete Shelf-Stable Reagent. Anal. Chem. 2021, 93 (12), 5177–5184. https://doi.org/10.1021/acs.analchem.0c05074.

(21) Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82 (Volume 82, 2013), 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449.

(22) Dumoulin, M.; Conrath, K.; Van Meirhaeghe, A.; Meersman, F.; Heremans, K.; Frenken, L. G. J.; Muyldermans, S.; Wyns, L.; Matagne, A. Single-Domain Antibody Fragments with High Conformational Stability. Protein Sci. 2002, 11 (3), 500–515. https://doi.org/10.1110/ps.34602.

(23) He, T.; Wang, Y.; Li, P.; Zhang, Q.; Lei, J.; Zhang, Z.; Ding, X.; Zhou, H.; Zhang, W. Nanobody-Based Enzyme Immunoassay for Aflatoxin in Agro-Products with High Tolerance to Cosolvent Methanol. Anal. Chem. 2014, 86 (17), 8873–8880. https://doi.org/10.1021/ac502390c.

(24) Jeong, H.-J.; Kawamura, T.; Dong, J.; Ueda, H. Q-Bodies from Recombinant Single-Chain Fv Fragment with Better Yield and Expanded Palette of Fluorophores. ACS Sens. 2016, 1 (1), 88–94. https://doi.org/10.1021/acssensors.5b00089.

(25) Kunz, P.; Zinner, K.; Mücke, N.; Bartoschik, T.; Muyldermans, S.; Hoheisel, J. D. The Structural Basis of Nanobody Unfolding Reversibility and Thermoresistance. Sci. Rep. 2018, 8 (1), 7934. https://doi.org/10.1038/s41598-018-26338-z.

(26) England, C. G.; Ehlerding, E. B.; Cai, W. NanoLuc: a Small Luciferase is Brightening up the Field of Bioluminescence. Bioconjug. Chem. 2016, 27 (5), 1175–1187. https://doi.org/10.1021/acs.bioconjchem.6b00112.

(27) Zhu, B.; Nosaka, N.; Kanamaru, S.; Dong, J.; Dai, Y.; Inoue, A.; Yang, Y.; Kobayashi, K.; Kitaguchi, T.; Iwasaki, H.; Koike, R.; Wakabayashi, K.; Ueda, H. Rapid and Sensitive SARS-CoV-2 Detection Using a Homogeneous Fluorescent Immunosensor Quenchbody with Crowding Agents. Analyst 2022. https://doi.org/10.1039/D2AN01051H.

(28) Dong, J.; Miyake, C.; Yasuda, T.; Oyama, H.; Morita, I.; Tsukahara, T.; Takahashi, M.; Jeong, H.-J.; Kitaguchi, T.; Kobayashi, N.; Ueda, H. PM Q-Probe: a Fluorescent Binding Protein That Converts Many Antibodies to a Fluorescent Biosensor. Biosens. Bioelectron. 2020, 165, 112425. https://doi.org/10.1016/j.bios.2020.112425.

(29) Treon, S. P.; Chabner, B. A. Concepts in Use of High-Dose Methotrexate Therapy. Clin. Chem. 1996, 42 (8), 1322–1329. https://doi.org/10.1093/clinchem/42.8.1322.

Posted


Submitted: 2024-06-21 09:53:49 UTC

Published: 2024-06-25 00:32:20 UTC
Section
Biology, Life Sciences & Basic Medicine