Preprint / Version 1

Tutorial: A generalization error estimation for overparameterized models via WAIC

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.537

Keywords:

WAIC, Neural Network, Overparameterized Model, Singular Model, Degree of Freedom, Generalization

Abstract

本稿は Journal of Computational and Graphical Statistics 誌に採択された我々の原著論文:

Okuno, A. and Yano, K. (2023). A generalization gap estimation for overparameterized models via the Langevin functional variance. Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2023.2197488.

に関する解説です.

Conflicts of Interest Disclosure

No conflict of interest.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Okuno, A. and Yano, K. (2023). A generalization gap estimation for overparameterized models via the Langevin functional variance. Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2023.2197488.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(116):3571–3594.

Posted


Submitted: 2023-10-24 06:17:20 UTC

Published: 2023-10-25 23:29:53 UTC
Section
Information Sciences