Preprint / Version 1

Quantum diffusion in quasi-periodically perturbed Harper model I

##article.authors##

  • Hiroaki Yamada Yamada Physics Research Laboratory
  • Kensuke S. Ikeda College of Science and Engineering, Ritsumeikan University

DOI:

https://doi.org/10.51094/jxiv.465

Keywords:

quantum diffusion, Anderson localization, normal diffusion, ballistic diffusion

Abstract

多色時間摂動を伴ったHarper モデルにおける量子波束の拡散の局在・非局在性を調べた。摂動強度を増大すると、局在相、弾道相どちらの場合でも、2 色以上では拡散状態へ転移することが確かめられた。局在状態の性質も含めて、これらの拡散状態に関する数値計算データを整理して示すことが本稿の目的である。

Conflicts of Interest Disclosure

The authors declare that they have no conflict of interest.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London A68, 874(1955).

D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields,Phys. Rev. B 14, 2239 (1976).

S. Aubry and Gilles André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3, 18 (1980).

J. Biddle, B. Wang, D. J. Priour Jr., and S. Das Sarma, Localization in one-dimensional incommensurate lattices beyond the Aubry-André model, Phys. Rev. A80, 021603(R)(2009).

L. Morales-Molina, E. Doerner, C. Danieli, and S. Flach, Resonant extended states in driven quasiperiodic lattices: Aubry-André localization by design, Phys. Rev. A 90,043630(2014).

C.Danieli, K.Rayanov, B.Pavlov, G.Martin, S.Flach, Approximating Metal-Insulator Transitions, Int. J. Mod. Phys. B 29, 1550036(2015).

S.Ganeshan, J.H. Pixley, and S.D. Sarma, Nearest Neighbor Tight Binding Models with an Exact Mobility Edge in One Dimension, Phys. Rev. Lett. 114, 146601(2015).

Jan Major, Giovanna Morigi, and Jakub Zakrzewski, Single-particle localization in dynamical potentials, Phys. Rev. A 98, 053633(2018).

G.A. Domnguez-Castro, R. Paredes, The AubryAndré model as a hobbyhorse for understanding the localization phenomenon, Eur. J. Phys. 40, 045403(2019).

F. A. An et al., Interactions and Mobility Edges: Observing the Generalized Aubry-André Model, Phys. Rev. Lett. 126, 040603(2021).

H. Hiramoto and S. Abe, Dynamics of an Electron in Quasiperiodic Systems. II. Harper's Model, J. Phys. Soc. Jpn. 57, 1365 (1988).

T. Geisel, R. Ketzmerick, and G. Petschel, New class of level statistics in quantum systems with unbounded diffusion, Phys. Rev. Lett. 66,1651 (1991).

M.Wilkinson and E.J.Austin, Spectral dimension and dynamics for Harper's equation, Phys.Rev. B 50, 1420(1994).

G. S. Ng and T. Kottos, Wavepacket dynamics of the nonlinear Harper model, Phys. Rev. B 75, 205120(2007).

M. Larcher, F. Dalfovo, and M. Modugno, Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasiperiodic potentials, Phys. Rev. A 80, 053606(2009).

S. Sarkar, S. Paul, C. Vishwakarma, S. Kumar, G. Verma, M. Sainath, U. D. Rapol, and M. S. Santhanam, Nonexponential Decoherence and Subdiffusion in Atom-Optics Kicked Rotor, Phys. Rev. Lett.118, 174101 (2017).

M. L. Sun, G. Wang, N. B. Li and T. Nakayama, Localization-delocalization transition in self-dual quasiperiodic lattices, Europhys. Lett. 110, 57003(2015).

Y. Wang, et al., One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges, Phys. Rev. Lett. 125, 196604(2020).

Xiaoming Cai, Localization transitions and winding numbers for non-Hermitian Aubry-André-Harper models with off-diagonal modulations, Phys. Rev. B 106, 214207(2022).

T.Liu, Xu Xia, S. Longhi, L. Sanchez-Palencia, Anomalous mobility edges in one-dimensional quasiperiodic models, SciPost Phys. 12, 027(2022).

R. Artuso, G. Casati, F. Borgonovi, L. Rebuzzini and I. Guarneri, Fractal and dynamical properties of the kicked harper model, International Journal of Modern Physics B 8, 207-235 (1994).

T. Prosen, I. I Satija, N. R. Shah, Dimer Decimation and Intricately Nested Localized-Ballistic Phases of Kicked Harper, Phys.Rev.Lett.87, 066601(2001).

A. R. Kolovsky and H. J. Korsch, Quantum diffusion in a biased kicked Harper system, Phys. Rev. E 68, 046202(2003).

B. Lévi and B. Georgeot, Quantum computation of a complex system: The kicked Harper model, Phys. Rev. E 70, 056218(2004).

Andrey R. Kolovsky and Giorgio Mantica, A. R. Kolovsky and G. Mantica, The driven Harper model, Phys. Rev. B 86, 054306(2012).

H. Wang, D.Y. H. Ho, W. Lawton, J. Wang, and J.Gong, Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence, Phys. Rev. E 88, 052920(2013).

P. Qin, C. Yin, and S. Chen, Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices, Phys. Rev. B 90, 054303 (2014).

T. Cadez, R. Mondaini, and P. D. Sacramento, Dynamical localization and the effects of aperiodicity in Floquet systems, Phys. Rev. B 96,144301 (2017).

V. Ravindranath and M. S. Santhanam, Dynamical transitions in aperiodically kicked tight-binding models, Phys. Rev. B 103, 134303(2021).

A. Lakshminarayan and V. Subrahmanyam, Entanglement sharing in one-particle states, Phys. Rev. A 67, 052304(2003).

T. Mishra, et al., Phase transition in a Aubry-André system with rapidly oscillating magnetic field, Phys. Rev. A94, 053612(2016).

S. Ray, A. Ghosh, and S. Sinha, Drive-induced delocalization in the Aubry-André model, Phys. Rev. E 97, 010101(R)(2018).

T.Shimasaki,et al., Anomalous localization and multifractality in a kicked quasicrystal, arXiv:2203.09442v2.

H.S.Yamada, and K.S. Ikeda, Critical phenomena of dynamical delocalization in quantum maps: Standard map and Anderson map, Phys.Rev.E 101, 032210(2020).

H.S.Yamada and K.S.Ikeda, Presence and absence of delocalization-localization transition in coherently perturbed disordered lattices, Phys.Rev.E 103, L040202(2021).

H.S.Yamada and K.S.Ikeda, Localization and delocalization properties in quasi-periodically-driven one-dimensional disordered systems, Phys.Rev.E 105, 054201(2022).

H.S.Yamada and K.S.Ikeda, Localized-Diffusive and Ballistic-Diffusive Transitions in Kicked Incommensurate lattices, Phys.Rev.E 107, L062201(2023).

A. Soffer, and W. Wang, Anderson Localization for Time Periodic Random Schrodinger Operators, Commun. Part. Diff. Eq. 28, 333(2003).

J. Bourgain, and W. Wang, Anderson Localization for Time Quasi-Periodic Random Schrodinger and Wave Equations, Commun. Math. Phys. 248, 429 (2004).

H. Hatami, C. Danieli, J. D. Bodyfelt, S. Flach, Quasiperiodic driving of Anderson localized waves in one dimension, Phys. Rev. E 93, 062205 (2016).

S. N. Evangelou and J.-L. Pichard, Critical Quantum Chaos and the One-Dimensional Harper Model, Phys. Rev. Lett. 84, 1643(2000).

G. Vattay, S. Kauffman, S.Niiranen, Quantum Biology on the Edge of Quantum Chaos, PLoS ONE 9(3): e89017(2014).

E. Abrahams (Editor), 50 Years of Anderson Localization, (World Scientific 2010).

S. Notarnicola, et al., From localization to anomalous diffusion in the dynamics of coupled kicked rotors, Phys. Rev. E 97, 022202 (2018).

E. Tarquini, G. Biroli, and M. Tarzia, Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B 95, 094204(2017).

Posted


Submitted: 2023-07-29 11:22:09 UTC

Published: 2023-08-03 06:26:40 UTC
Section
Physics