Preprint / Version 1

Transfer RNA synthesis-coupled translation and DNA replication in a reconstituted transcription/translation system

##article.authors##

  • Ryota Miyachi Graduate School of Arts and Science, The University of Tokyo
  • Yoshihiro Shimizu RIKEN Center for Biosystems Dynamics Research
  • Norikazu Ichihashi Graduate School of Arts and Science, The University of Tokyo

DOI:

https://doi.org/10.51094/jxiv.35

Keywords:

tRNA, translation, DNA replication, cell-free synthetic biology, PURE system

Abstract

Transfer RNAs (tRNA) are key molecules involved in translation. In vitro synthesis of tRNAs and their coupled translation are important challenges in the construction of a self-regenerative molecular system. Here, we first purified EF-Tu and ribosome components in a reconstituted translation system of Escherichia coli to remove residual tRNAs. Next, we expressed 15 types of tRNAs in the repurified translation system and performed translation of the reporter luciferase gene depending on the expression. Furthermore, we demonstrated DNA replication through expression of a tRNA encoded by DNA, mimicking information processing within the cell. Our findings highlight the feasibility of an in vitro self-reproductive system in which tRNAs can be synthesized from replicating DNA.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

(1) Szostak, J. W.; Bartel, D. P.; Luisi, P. L. Synthesizing Life; 2001.

(2) Forster, A. C.; Church, G. M. Towards Synthesis of a Minimal Cell. Mol. Syst. Biol. 2006, 2, 45. https://doi.org/10.1038/msb4100090.

(3) Forlin, M.; Lentini, R.; Mansy, S. S. Cellular Imitations. Curr. Opin. Chem. Biol. 2012, 16, 586–592.

(4) Buddingh’, B. C.; van Hest, J. C. M. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity. Acc. Chem. Res. 2017, 50 (4), 769–777. https://doi.org/10.1021/acs.accounts.6b00512.

(5) Yewdall, N. A.; Mason, A. F.; Hest, J. C. M. Van. The Hallmarks of Living Systems: Towards Creating Artificial Cells. Interface Focus 2018, 8 (5), 20180023. https://doi.org/10.1098/rsfs.2018.0023.

(6) Ichihashi, N. What Can We Learn from the Construction of in Vitro Replication Systems? Ann. N. Y. Acad. Sci. 2019, 1447 (1), 144–156. https://doi.org/10.1111/nyas.14042.

(7) Silverman, A. D.; Karim, A. S.; Jewett, M. C. Cell-Free Gene Expression: An Expanded Repertoire of Applications. Nat. Rev. Genet. 2020, 21 (3), 151–170.

(8) Noireaux, V.; Liu, A. P. The New Age of Cell-Free Biology. Annu. Rev. Biomed. Eng. 2020, 22, 51–77.

(9) Laohakunakorn, N.; Grasemann, L.; Lavickova, B.; Michielin, G.; Shahein, A.; Swank, Z.; Maerkl, S. J. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front. Bioeng. Biotechnol. 2020, 8, 213.

(10) Damiano, L.; Stano, P. On the “Life-Likeness” of Synthetic Cells. Front. Bioeng. Biotechnol. 2020, 8, 1–6.

(11) Cho, E.; Lu, Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-like Artificial Cells and Beyond. ACS Synth. Biol. 2020, 9 (11), 2881–2901.

(12) Ivanov, I.; Castellanos, S. L.; Balasbas, S.; Otrin, L.; Maruscaroniccaron, N.; Vidakovicacute-Koch, T.; Sundmacher, K. Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 287–308. https://doi.org/10.1146/annurev-chembioeng-092220-085918.

(13) Olivi, L.; Berger, M.; Creyghton, R. N. P.; Franceschi, N. De; Dekker, C.; Mulder, B. M.; Claassens, N. J.; Rein ten Wolde, P.; van der Oost, J. Towards a Synthetic Cell Cycle. Nat. Commun. 2015, 1–84.

(14) Wang, C.; Yang, J.; Lu, Y. Modularize and Unite: Toward Creating a Functional Artificial Cell. Front. Mol. Biosci. 2021, 8, 1–14. https://doi.org/10.3389/fmolb.2021.781986.

(15) Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa, K.; Ueda, T. Cell-Free Translation Reconstituted with Purified Components. Nat. Biotechnol. 2001, 19 (8), 751–755. https://doi.org/10.1038/90802.

(16) Biner, O.; Fedor, J. G.; Yin, Z.; Hirst, J. Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration. ACS Synth. Biol. 2020, 9 (6), 1450–1459. https://doi.org/10.1021/acssynbio.0c00110.

(17) Libicher, K.; Hornberger, R.; Heymann, M.; Mutschler, H. In Vitro Self-Replication and Multicistronic Expression of Large Synthetic Genomes. Nat. Commun. 2020, 11 (1), 904. https://doi.org/10.1038/s41467-020-14694-2.

(18) Okauchi, H.; Ichihashi, N. Continuous Cell-Free Replication and Evolution of Artificial Genomic DNA in a Compartmentalized Gene Expression System. ACS Synth. Biol. 2021, 10 (12), 3507–3517. https://doi.org/10.1021/acssynbio.1c00430.

(19) Okauchi, H.; Sakatani, Y.; Otsuka, K.; Ichihashi, N. Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach. ACS Synth. Biol. 2020, 9 (7), 1771–1780. https://doi.org/10.1021/acssynbio.0c00137.

(20) Blanken, D.; Foschepoth, D.; Serrão, A. C.; Danelon, C. Genetically Controlled Membrane Synthesis in Liposomes. Nat. Commun. 2020, 11 (1), 4317. https://doi.org/10.1038/s41467-020-17863-5.

(21) Scott, A.; Noga, M. J.; Graaf, P. De; Westerlaken, I.; Yildirim, E.; Danelon, C. Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes. PLoS One 2016, 11 (10), e0163058. https://doi.org/10.1371/journal.pone.0163058.

(22) Lavickova, B.; Laohakunakorn, N.; Maerkl, S. J. A Partially Self-Regenerating Synthetic Cell. Nat. Commun. 2020, 11 (1), 1–11. https://doi.org/10.1038/s41467-020-20180-6.

(23) Gaut, N. J.; Adamala, K. P. Reconstituting Natural Cell Elements in Synthetic Cells. Adv. Biol. 2021, 5 (3), 2000188. https://doi.org/10.1002/adbi.202000188.

(24) Libicher, K.; Mutschler, H. Probing Self-Regeneration of Essential Protein Factors Required for: In Vitro Translation Activity by Serial Transfer. Chem. Commun. 2020, 56 (98), 15426–15429. https://doi.org/10.1039/d0cc06515c.

(25) Doerr, A.; Foschepoth, D.; Forster, A. C.; Danelon, C. In Vitro Synthesis of 32 Translation-Factor Proteins from a Single Template Reveals Impaired Ribosomal Processivity. Sci. Rep. 2021, 11 (1), 1–12. https://doi.org/10.1038/s41598-020-80827-8.

(26) Komine, Y.; Adachi, T.; Inokuchi, H.; Ozeki, H. Genomic Organization and Physical Mapping of the Transfer RNA Genes in Escherichia Coli K12. J. Mol. Biol. 1990, 212 (4). https://doi.org/10.1016/0022-2836(90)90224-A.

(27) Calles, J.; Justice, I.; Brinkley, D.; Garcia, A.; Endy, D. Fail-Safe Genetic Codes Designed to Intrinsically Contain Engineered Organisms. Nucleic Acids Res. 2019, 47 (19), 10439–10451. https://doi.org/10.1093/nar/gkz745.

(28) Hibi, K.; Amikura, K.; Sugiura, N.; Masuda, K.; Ohno, S.; Yokogawa, T.; Ueda, T.; Shimizu, Y. Reconstituted Cell-Free Protein Synthesis Using in Vitro Transcribed TRNAs. Commun. Biol. 2020, 3 (1), 350. https://doi.org/10.1038/s42003-020-1074-2.

(29) Chen, J.; Chen, M.; Zhu, T. F. Translating Protein Enzymes without Aminoacyl-TRNA Synthetases. Chem 2021, 7 (3), 786–798. https://doi.org/10.1016/j.chempr.2021.01.017.

(30) Cheetham, G. M. T.; Jeruzalmi, D.; Steltz, T. A. Structural Basis for Initiation of Transcription from an RNA Polymerase- Promoter Complex. Nature 1999, 399 (6731), 80–83. https://doi.org/10.1038/19999.

(31) Conrad, T.; Plumbom, I.; Alcobendas, M.; Vidal, R.; Sauer, S. Maximizing Transcription of Nucleic Acids with Efficient T7 Promoters. Commun. Biol. 2020, 3 (1), 439. https://doi.org/10.1038/s42003-020-01167-x.

(32) Sakatani, Y.; Ichihashi, N.; Kazuta, Y.; Yomo, T. A Transcription and Translation-Coupled DNA Replication System Using Rolling-Circle Replication. Sci. Rep. 2015, 5, 10404. https://doi.org/10.1038/srep10404.

(33) Sakatani, Y.; Yomo, T.; Ichihashi, N. Self-Replication of Circular DNA by a Self-Encoded DNA Polymerase through Rolling-Circle Replication and Recombination. Sci. Rep. 2018, 8 (1), 13089. https://doi.org/10.1038/s41598-018-31585-1.

(34) Su’etsugu, M.; Takada, H.; Katayama, T.; Tsujimoto, H. Exponential Propagation of Large Circular DNA by Reconstitution of a Chromosome-Replication Cycle. Nucleic Acids Res. 2017, 45, 11525–11534.

(35) Van Nies, P.; Westerlaken, I.; Blanken, D.; Salas, M.; Mencía, M.; Danelon, C. Self-Replication of DNA by Its Encoded Proteins in Liposome-Based Synthetic Cells. Nat. Commun. 2018, 9, 1583.

(36) Frank, D. N.; Pace, N. R. Ribonuclease P: Unity and Diversity in a TRNA Processing Ribozyme. Annu. Rev. Biochem. 1998, 67, 153–180. https://doi.org/10.1146/annurev.biochem.67.1.153.

(37) Gallo, S.; Furler, M.; Sigel, R. K. O. In Vitro Transcription and Purification of RNAs of Different Size. Chimia (Aarau). 2005, 59 (11), 812–816. https://doi.org/10.2533/000942905777675589.

(38) Trang, P.; Kim, K.; Liu, F. Developing RNase P Ribozymes for Gene-Targeting and Antiviral Therapy. Cellular Microbiology. 2004, pp 499–508. https://doi.org/10.1111/j.1462-5822.2004.00398.x.

(39) Fechter, P.; Rudinger, J.; Giegé, R.; Théobald-Dietrich, A. Ribozyme Processed TRNA Transcripts with Unfriendly Internal Promoter for T7 RNA Polymerase: Production and Activity. FEBS Lett. 1998, 436 (1), 99–103. https://doi.org/10.1016/S0014-5793(98)01096-5.

(40) Kao, C.; Rüdisser, S.; Zheng, M. A Simple and Efficient Method to Transcribe RNAs with Reduced 3′ Heterogeneity. Methods 2001, 23 (3), 201–205. https://doi.org/10.1006/meth.2000.1131.

(41) Jewett, M. C.; Fritz, B. R.; Timmerman, L. E.; Church, G. M. In Vitro Integration of Ribosomal RNA Synthesis, Ribosome Assembly, and Translation. Mol. Syst. Biol. 2013, 9 (1), 678. https://doi.org/10.1038/msb.2013.31.

Posted


Submitted: 2022-03-29 23:42:26 UTC

Published: 2022-03-31 08:13:58 UTC
Section
Biology, Life Sciences & Basic Medicine