SARS-CoV-2 HaploGraph: visualization of SARS-CoV-2 haplotypes spread in Japan
DOI:
https://doi.org/10.51094/jxiv.338Keywords:
COVID-19, haplotype, genomic surveillance, SARS-CoV-2, web visualizationAbstract
Since the early phase of the coronavirus disease 2019 (COVID-19) pandemic, a number of research institutes have been sequencing and sharing high-quality severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes to trace the route of infection in Japan. To provide insight into the spread of COVID-19, we developed a web platform named SARS-CoV-2 HaploGraph to visualize the emergence timing and geographical transmission of the SARS-CoV-2 haplotypes. Using data from the GISAID EpiCoV database as of June 4, 2022, we created a haplotype naming system by determining the ancestral haplotype for each wave and showed prefectural or region-specific haplotypes in each of the four epidemic waves in Japan. The SARS-CoV-2 HaploGraph allows for interactive tracking of virus evolution and geographical prevalence of haplotypes and aids in developing effective public health control strategies during the global pandemic. The code and the data used for this study are publicly available at: https://github.com/ktym/covid19/.
Conflicts of Interest Disclosure
The authors have no competing interests.Downloads *Displays the aggregated results up to the previous day.
References
Abe, T., and Arita, M. (2021) Genomic Surveillance in Japan of AY.29—A New Sub-lineage of SARS-CoV-2 Delta Variant with C5239T and T5514C Mutations. medRxiv doi: https://doi.org/10.1101/2021.09.20.21263869
Arima, Y., Kanou, K., Arashiro, T., K Ko, Y., Otani, K., Tsuchihashi, Y., Takahashi, T., Miyahara, R., Sunagawa, T., and Suzuki, M. (2021) Epidemiology of Coronavirus Disease 2019 in Japan: Descriptive Findings and Lessons Learned through Surveillance during the First Three Waves. JMA journal 4, 198–206.
Arima, Y., Shimada, T., Suzuki, M., Suzuki, T., Kobayashi, Y., Tsuchihashi, Y., Nakamura, H., Matsumoto, K., Takeda, A., Kadokura, K., et al. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 Infection among Returnees to Japan from Wuhan, China, 2020. Emerg. Infect. Dis. 26, 1596–600.
Arita, M. (2021) Open access and data sharing of nucleotide sequence data. Data Science Journal, 20(1), 28. DOI: http://doi.org/10.5334/dsj-2021-028
Carabelli, A. M., Peacock, T. P., Thorne, L. G., Harvey, W. T., Hughes, J., Silva, T. I. de, Peacock, S. J., Barclay, W. S., Silva, T. I. de, Towers, G. J. et al. (2023) SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. In press.
Challen, R., Brooks-Pollock, E., Read, J. M., Dyson, L., Tsaneva-Atanasova, K., and Danon, L. (2021) Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 372, n579.
Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., et al. (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055.
Davies, N. G., Jarvis, C. I., CMMID COVID-19 Working Group, Edmunds, W. J., Jewell, N. P., Diaz-Ordaz, K., and Keogh, R. H. (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593, 270–274.
Desingu, P. A., Nagarajan, K., and Dhama, K. (2022) Emergence of Omicron third lineage BA.3 and its importance. J. Med. Virol. 94, 1808–1810.
Earnest, R., Uddin, R., Matluk, N., Renzette, N., Turbett, S. E., Siddle, K. J., Loreth, C., Adams, G., Tomkins-Tinch, C. H., Petrone, M. E., et al. (2022) Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep. Med. 3, 100583.
Elbe, S., and Buckland-Merrett, G. (2017) Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob. Chall. 1, 33–46.
GitHub. (2021) Available online at: https://github.com/cov-lineages/pango-designation/issues/381 (accessed July 13, 2022).
GitHub. (2022) Available online at: https://github.com/virus-evolution/gofasta (accessed July 13, 2022).
Graham, M. S., Sudre, C. H., May, A., Antonelli, M., Murray, B., Varsavsky, T., Kläser, K., Canas, L. S., Molteni, E., Modat, M., et al. (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health 6, e335–e345.
Grint, D. J., Wing, K., Williamson, E., McDonald, H. I., Bhaskaran, K., Evans, D., Evans, S. J., Walker, A. J., Hickman, G., Nightingale, E., et al. (2021) Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February. Euro Surveill. 26, 2100256.
Gupta, N., Das, M., Rakshit, P., Singh, S., Abraham, P., Panda, S., and Team, N. (2021) SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms, 9, 1542.
Harrison, A. G., Lin, T., and Wang, P. (2020) Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 41, 1100–1115.
Hirotsu, Y., and Omata, M. (2021a) Detection of R.1 lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in Japan. PLoS Pathog. 17, e1009619.
Hirotsu, Y., and Omata, M. (2021b) SARS-CoV-2 B.1.1.7 lineage rapidly spreads and replaces R.1 lineage in Japan: Serial and stationary observation in a community. Infect. Genet. Evol. 95, 105088.
Iketani, S., Liu, L., Guo, Y., Liu, L., Chan, J. F., Huang, Y., Wang, M., Luo, Y., Yu, J., Chu, H., et al. (2022) Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556.
Ito, K., Piantham, C., and Nishiura, H. (2021) Predicted dominance of variant Delta of SARS-CoV-2 before Tokyo Olympic Games, Japan, July 2021. Euro Surveill. 26, 2100570.
Katoh, K., Rozewicki, J., and Yamada, K. D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20, 1160–1166.
Khailany, R. A., Safdar M., and Ozaslan M. (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19, 100682.
Khare, S., Gurry, C., Freitas, L., Schultz, M. B., Bach, G., Diallo, A., Akite, N., Ho, J., Lee, R. T., Yeo, W., et al. (2021) GISAID's Role in Pandemic Response. China CDC Wkly. 3, 1049–1051.
Kistler, K. E., Huddleston, J. and Bedford, T. (2022) Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545-555.e4.
Koyama, T., Tokumasu, R., Katayama, K., Saito, A., Kudo, M., and Imoto, S. (2022) Cross-Border Transmissions of the Delta Substrain AY.29 During Tokyo Olympic and Paralympic Games. Front. Microbiol. 13, 883849.
Kryukov K., Jin L., and Nakagawa S. (2022) Efficient compression of SARS-CoV-2 genome data using Nucleotide Archival Format (NAF). Patterns 3, 100562.
Leung, K., Shum, M. H., Leung, G. M., Lam, T. T., and Wu, J. T. (2021) Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 26, 2002106.
Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100.
Luan, B., Wang, H., and Huynh, T. (2021) Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett. 595, 1454–1461.
Meng, B., Abdullahi, A., Ferreira, I. A. T. M., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P. P., Fatihi, S., Rathore, S., et al. (2022) Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714.
Ministry of Health, Labour and Welfare (MHLW). (2020) The first patient with pneumonia associated with novel coronavirus (in Japanese). Available online at: https://www.mhlw.go.jp/stf/newpage_08906.html (accessed July 13, 2022).
Ministry of Health, Labour and Welfare (MHLW). (2021) Asymptomatic carriers of a SARS-CoV-2 infection (mutant variant) (Airport Quarantine) in Japan (in Japanese). Available online at: https://www.mhlw.go.jp/stf/newpage_22507.html (accessed July 13, 2022).
Ministry of Health, Labour and Welfare (MHLW). (2022) The 81st SARS-CoV-2 Infectious Disease Control Advisory Board (in Japanese). Available online at: https://www.mhlw.go.jp/content/10900000/000931584.pdf (accessed July 13, 2022).
Mlcochova, P., Kemp, S. A., Dhar, M. S., Papa, G., Meng, B., Ferreira, I. A. T. M., Datir, R., Collier, D. A., Albecka, A., Singh, S., et al. (2021) SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119.
Morens, D. M., Breman, J. G., Calisher, C. H., Doherty, P. C., Hahn, B. H., Keusch, G. T., Kramer, L. D., LeDuc, J.W., Monath, T.P., and Taubenberger, J. K. (2020) The Origin of COVID-19 and Why It Matters. Am. J. Trop. Med. Hyg. 103, 955–959.
Nabeshima, T., Takazono, T., Ashizawa, N., Miyazaki, T., Inoue, S., Ngwe Tun, M. M., Izumikawa, K., Mukae, H., Moi, M. L., and Morita, K. (2021) COVID-19 cryptic transmission and genetic information blackouts: Need for effective surveillance policy to better understand disease burden. Lancet Reg. Health West Pac. 7, 100–104.
National Institute of Infectious Diseases (NIID). (2021a) Molecular epidemiological survey using genomic information of the new coronavirus SARS-CoV-2 (as of January 14, 2021). IASR Vol. 42 p61-64: March 2021 issue (in Japanese). Available online at: https://www.niid.go.jp/niid/ja/2019-ncov/2488-idsc/iasr-news/10152-493p01.html (accessed July 13, 2022).
National Institute of Infectious Diseases (NIID). (2021b) Domestic influx of B.1.1.316 strain carrying the new coronavirus SARS-CoV-2 Spike protein E484K mutation as of February 2, 2021 (in Japanese). Available online at: https://www.niid.go.jp/niid/ja/diseases/ka/corona-virus/2019-ncov/2488-idsc/iasr-news/10188-493p02.html (accessed July 29, 2022).
National Institute of Infectious Diseases (NIID). (2022) About SARS-CoV-2 mutant strain B.1.1.529 strain – Omicron strain (in Japanese). Available online at: https://www.niid.go.jp/niid/ja/2019-ncov/2551-cepr/11029-cepr-b11529-9.html (accessed July 13, 2022).
Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274.
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., and Agha, R. (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 78, 185–193.
Ode, H., Nakata, Y., Nagashima, M., Hayashi, M., Yamazaki, T., Asakura, H., Suzuki, J., Kubota, M., Matsuoka, K., Matsuda, M., et al. (2022) Molecular epidemiological features of SARS-CoV-2 in Japan, 2020-1. Virus Evol. 8, veac034.
Okumura, N., Tsuzuki, S., Saito, S., Hattori, S. I., Takeuchi, J. S., Saito, T., Ujiie, M., Hojo, M., Iwamoto, N., Sugiura, W., Mitsuya, H., and Ohmagari, N. (2022) Neutralising activity and antibody titre in 10 patients with breakthrough infections of the SARS-CoV-2 Omicron variant in Japan. J. Infect. Chemother. 28, 1340–1343.
Ou, J., Lan, W., Wu, X., Zhao, T., Duan, B., Yang, P., Ren, Y., Quan, L., Zhao, W., Seto, D., et al. (2022) Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct. Target Ther. 7, 138.
Outbreak.info. (2023) Available online at: https://outbreak.info/ (accessed January 13, 2023)
Rambaut, A., Holmes, E. C., O'Toole, Á., Hill, V., McCrone, J. T., Ruis, C., du Plessis, L., and Pybus, O. G. (2020) A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407.
Robson, F., Khan, K. S., Le, T. K., Paris, C., Demirbag, S., Barfuss, P., Rocchi, P. and Ng, W. L. (2020) Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol. Cell 79, 710–727.
Saito, A., Irie, T., Suzuki, R., Maemura, T., Nasser, H., Uriu, K., Kosugi, Y., Shirakawa, K., Sadamasu, K., Kimura, I., et al. (2022) Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306.
Sampath, S., Khedr, A., Qamar, S., Tekin, A., Singh, R., Green, R., and Kashyap, R. (2021) Pandemics Throughout the History. Cureus 13, e18136
Sekizuka, T., Itokawa, K., Hashino, M., Kawano-Sugaya, T., Tanaka, R., Yatsu, K., Ohnishi, A., Goto, K., Tsukagoshi, H., Ehara, H., et al. (2020a) A Genome Epidemiological Study of SARS-CoV-2 Introduction into Japan. mSphere 5, e00786 –20.
Sekizuka, T., Itokawa, K., Kageyama, T., Saito, S., Takayama, I., Asanuma, H., Nao, N., Tanaka, R., Hashino, M., Takahashi, T., et al. (2020b) Haplotype networks of SARS-CoV-2 infections in the Diamond Princess cruise ship outbreak. Proc. Natl. Acad. Sci. USA. 117, 20198–20201.
Sekizuka, T., Itokawa, K., Saito, M., Shimatani, M., Matsuyama, S., Hasegawa, H., Saito, T., and Kuroda, M. (2022) Genome Recombination between the Delta and Alpha Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Jpn. J. Infect. Dis. 75, 415–418.
Shu, Y., and McCauley, J. (2017) GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 22, 30494.
Smallwood, N., Harrex, W., Rees, M., Willis, K., and Bennett, C. M. (2022) COVID-19 infection and the broader impacts of the pandemic on healthcare workers. Respirology 27, 411–426.
Suzuki, R., Yamasoba, D., Kimura, I., Wang, L., Kishimoto, M., Ito, J., Morioka, Y., Nao, N., Nasser, H., Uriu, K., et al. (2022) Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705.
Syed, A. M., Taha, T. Y., Tabata, T., Chen, I. P., Ciling, A., Khalid, M. M., Sreekumar, B., Chen, P. Y., Hayashi, J. M., Soczek, K. M., et al. (2021) Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science 374, 1626–1632.
Takada, K., Ueda, M.T., Shichinohe, S., Kida, Y., Ono, C., Matsuura, Y., Watanabe, T., Nakagawa, S. (2022) Genomic diversity of SARS-CoV-2 can be accelerated by mutations in the nsp14 gene. iScience 26, 106210.
Tanaka, H., Hirayama, A., Nagai, H., Shirai, C., Takahashi, Y., Shinomiya, H., Taniguchi, C., and Ogata, T. (2021) Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population. Int. J. Environ. Res. Public Health 18, 7752.
Tokyo Metropolitan Institute of Public Health (TMIPH). (2022) Whole genome analysis of new coronavirus detected in Tokyo (Omicron BA strain) (in Japanese). Available online at: https://www.tmiph.metro.tokyo.lg.jp/lb_virus/sars2ngstree/ (accessed July 13, 2022).
Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., Geidelberg, L., Hinsley, W. R., Laydon, D. J., Dabrera, G., O'Toole, Á., et al. (2021) Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269.
World Health Organization (WHO). (2022b) WHO Coronavirus (COVID-19) Dashboard. Available online at: https://covid19.who.int/ (accessed July 13, 2022).
World Health Organization (WHO). (2022a) Tracking SARS-CoV-2 variants. Available online at: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed July 13, 2022).
Yamagishi, T., Kamiy, a. H., Kakimoto, K., Suzuki, M., and Wakita, T. (2020) Descriptive study of COVID-19 outbreak among passengers and crew on Diamond Princess cruise ship, Yokohama Port, Japan, 20 January to 9 February 2020. Euro Surveill. 25, 2000272.
Yu, G. (2020) Using ggtree to Visualize Data on Tree-Like Structures. Curr Protoc Bioinformatics 69, e96.
Downloads
Posted
Submitted: 2023-03-22 08:46:03 UTC
Published: 2023-03-23 23:06:02 UTC
License
Copyright (c) 2023
So Nakagawa
Toshiaki Katayama
Lihua Jin
Jiaqi Wu
Kirill Kryukov
Rise Oyachi
Junko S Takeuchi
Takatomo Fujisawa
Satomi Asano
Momoka Komatsu
Jun-ichi Onami
Takashi Abe
Masanori Arita
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.