DOI: https://doi.org/10.1175/MWR-D-23-0043.1
A New Closure Assumption and Formulation Based on the Helmholtz Decomposition in the Generalized Velocity Track Display
DOI:
https://doi.org/10.51094/jxiv.299Keywords:
Tropical cyclone, Doppler weather radar, Typhoon, Hurricane, Mesoscale meteorologyAbstract
Doppler weather radars are powerful tools for investigating the inner-core structure and intensity of tropical cyclones (TCs). The Doppler velocity can provide quantitative information on the vortex structure in the TCs. The Generalized Velocity Track Display (GVTD) technique has been used to retrieve the axisymmetric circulations and asymmetric tangential flows in the TCs from ground-based single-Doppler radar observations. GVTD can have limited applicability to asymmetric vortices due to the closure assumption of no asymmetric radial flows. The present study proposes a new closure formulation that includes asymmetric radial flows, based on the Helmholtz decomposition. Here it is assumed that the horizontal flow is predominantly rotational and expressed with a streamfunction, but limited inclusion of wavenumber-1 divergence is available. Unlike the original GVTD, the decomposition introduces consistency along radius by requiring to solve equations simultaneously. The new approach, named GVTD-X, is applied to analytical vortices and a real TC with asymmetric structures. This approach makes the retrieval of axisymmetric flow relatively insensitive to the contamination from asymmetric flows and the error in the storm center locations. For an analytical vortex with a wavenumber-2 asymmetry, the maximum relative error of the axisymmetric tangential wind retrieved by GVTD-X is less than 2% at the radius of the maximum wind speed. In practical applications, errors can be evaluated by comparing results for different maximum wavenumbers. When applied to a real TC, GVTD-X largely suppressed an artificial periodic fluctuation that occurs in GVTD from the aliasing of the neglected asymmetric radial flows.
Conflicts of Interest Disclosure
The authors declare no conflicts of interest associated with this manuscript.Downloads *Displays the aggregated results up to the previous day.
References
Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.
Bell, M. M., and W.-C. Lee, 2012: Objective tropical cyclone center tracking using single-Doppler radar. J. Appl. Meteor. Climatol., 51, 878-896, https://doi.org/10.1175/JAMC-D-11-0167.1.
Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 2414-2432, https://doi.org/10.1175/JAS-D-11-0167.1.
Cha, T.-Y., and M. M. Bell, 2021: Comparison of single-Doppler and multiple-Doppler wind retrievals in Hurricane Matthew (2016). Atmos. Meas. Tech., 14, 3523-3539, https://doi.org/10.5194/amt-14-3523-2021.
Cha, T.-Y., M. M. Bell, W.-C. Lee, and A. J. DesRosiers, 2020: Polygonal eyewall asymmetries during the rapid intensification of Hurricane Michael (2018). Geophys. Res. Lett., 47, e2020GL087 919, https://doi.org/10.1029/2020GL087919.
Dai, H., and Coauthors, 2021: Quasi-periodic intensification of convective asymmetries in the outer eyewall of Typhoon Lekima (2019). Geophys. Res. Lett., 48, e2020GL091 633, https://doi.org/10.1029/2020GL091633.
Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235-1239, https://doi.org/10.1126/science.1135650.
Houze, R. A., Jr., and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 1503-1521, https://doi.org/10.1175/BAMS-87-11-1503.
Jou, B. J.-D., W.-C. Lee, S.-P. Liu, and Y.-C. Kao, 2008: Generalized VTD retrieval of atmospheric vortex kinematic structure. Part I: Formulation and error analysis. Mon. Wea. Rev., 136, 995-1012, https://doi.org/10.1175/2007MWR2116.1.
Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, https://doi.org/10.2151/jmsj.2015-001.
Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196-2209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.
Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interaction between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893-3917, https://doi.org/10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.
Lai, T.-K., K. Menelaou, and M. K. Yau, 2019: Barotropic instability across the moat and inner eyewall dissipation: A numerical study of Hurricane Wilma (2005). J. Atmos. Sci., 76, 989-1013, https://doi.org/10.1175/JAS-D-18-0191.1.
Lee, W.-C., and M. M. Bell, 2007: Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall. Geophys. Res. Lett., 34, L02 802, https://doi.org/10.1029/2006GL027889.
Lee, W.-C., P. R. Harasti, M. Bell, B. J.-D. Jou, and M.-H. Chang, 2006: Doppler velocity signatures of idealized elliptical vortices. Terr. Atmos. Ocean. Sci., 17, 429-446, https://doi.org/10.3319/TAO.2006.17.2.429(A).
Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 2419-2439, https://doi.org/10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.
Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and F. D. Marks, 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part III: Evolution and structures of Typhoon Alex (1987). Mon. Wea. Rev., 128, 3982-4001, https://doi.org/10.1175/1520-0493(2000)129<3982:TCKSRF>2.0.CO;2.
Lee, W.-C., and F. D. Marks, 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 1925-1936, https://doi.org/10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2.
Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mul-hall Tornado on 3 May 1999. J. Atmos. Sci., 62, 2373-2393, https://doi.org/10.1175/JAS3489.1.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for the vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435-465, https://doi.org/10.1002/qj.49712353810.
Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913-921, https://doi.org/10.2151/jmsj1965.64.6_913.
Murillo, S. T., W.-C. Lee, M. M. Bell, G. M. Barnes, F. D. Marks, and P. P. Dodge, 2011: Intercomparison of Ground-Based Velocity Track Display (GBVTD)-retrieved circulation centers and structures of Hurricane Danny (1997) from two coastal WSR-88Ds. Mon. Wea. Rev., 139, 153-174, https://doi.org/10.1175/2010MWR3036.1.
Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.
Shimada, U., and T. Horinouchi, 2018: Reintensification and eyewall formation in strong shear: A case study of Typhoon Noul (2015). Mon. Wea. Rev., 146, 2799-2817, https://doi.org/10.1175/MWR-D-18-0035.1.
Shimada, U., M. Sawada, and H. Yamada, 2016: Evaluation of the accuracy and utility of tropical cyclone intensity estimation using single ground-based Doppler radar observations. Mon. Wea. Rev., 144, 1823-1840, https://doi.org/10.1175/MWR-D-15-0254.1.
Shimada, U., M. Sawada, and H. Yamada, 2018: Doppler radar analysis of the rapid intensification of Typhoon Goni (2015) after eyewall replacement. J. Atmos. Sci., 75, 143-162, https://doi.org/10.1175/JAS-D-17-0042.1.
Tsujino, S., 2023: GVTD-X: Release version-1.1. Zenodo, https://doi.org/10.5281/zenodo.7656827.
Yamauchi, H., O. Suzuki, and K. Akaeda, 2006: A hybrid multi-PRI method to dealias Doppler velocities. SOLA, 2, 92-95, https://doi.org/10.2151/sola.2006-024.
Downloads
Posted
Submitted: 2023-02-24 03:45:14 UTC
Published: 2023-02-28 05:29:37 UTC
License
Copyright (c) 2023
Satoki Tsujino
Takeshi Horinouchi
Udai Shimada
This work is licensed under a Creative Commons Attribution 4.0 International License.