This preprint has been published.
DOI: 10.1038/s44172-024-00160-0
Preprint / Version 1

In-situ Optimization of Acoustic Hologram with Digital Twin

##article.authors##

  • Tatsuki Fushimi Institute of Library, Information and Media Science, University of Tsukuba https://orcid.org/0000-0003-3944-0014
  • Daichi Tagami Graduate School of Comprehensive Human Sciences, University of Tsukuba
  • Kenta Yamamoto Graduate School of Comprehensive Human Sciences, University of Tsukuba
  • Yoichi Ochiai Institute of Library, Information and Media Science, University of Tsukuba https://researchmap.jp/ochyai

DOI:

https://doi.org/10.51094/jxiv.249

Keywords:

Acoustic Hologram, Acoustic Levitation, Acoustophoretic Volumetric Display, Optimization

Abstract

As the use of acoustophoresis methods such as ultrasonic haptic sensation, acoustic levitation, acoustic streamings, and displays becomes more prevalent, the need for the accurate generation of acoustic holograms has increased. However, experimental results have shown that the actual acoustic field may differ from the simulated field owing to uncertainties in the transducer position, power and phase, or from nonlinearity and inhomogeneity in the field. Traditional methods for experimentally optimizing acoustic holograms require prior calibration and do not scale well with the number of variables. Our proposed digital twin approach combines feedback from experimental measurements in the physical setup with numerically obtained derivatives of the loss function using automatic differentiation to optimize the loss function. This approach is faster and more efficient than the classical finite difference approach, making it beneficial for various applications such as acoustophoretic volumetric displays, ultrasonic haptic sensations, focused ultrasound therapy, and non-destructive testing.

Conflicts of Interest Disclosure

Y.O. has multiple government/non-governmental role.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Transactions on Haptics 3, 155–165 (2010). https://doi.org/10.1109/TOH.2010.4

Long, B., Seah, S.A., Carter, T., Subramanian, S.: Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Transactions on Graphics 33, 1–10 (2014). https://doi.org/10.1145/2661229.2661257

Seah, S.A., Drinkwater, B.W., Carter, T., Malkin, R., Subramanian, S.: Dexterous ultrasonic levitation of millimeter-sized objects in air. IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61, 1233–1236 (2014). https://doi.org/10.1109/TUFFC.2014.3022

Marzo, A., Seah, S.A., Drinkwater, B.W., Sahoo, D.R., Long, B., Subramanian, S.: Holographic acoustic elements for manipulation of levitated objects. Nature Communications 6, 8661 (2015). https://doi.org/10.1038/ncomms9661.

Ochiai, Y., Hoshi, T., Rekimoto, J.: Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays. PLoS ONE 9, 97590 (2014).

https://doi.org/10.1371/journal.pone.0097590

Hasegawa, K., Qiu, L., Noda, A., Inoue, S., Shinoda, H.: Electronically steerable ultrasound-driven long narrow air stream. Applied Physics

Letters 111, 064104 (2017). https://doi.org/10.1063/1.4985159

Norasikin, M.A., Plasencia, D.M., Memoli, G., Subramanian, S.: Sonicspray: A technique to reconfigure permeable mid-air displays. ISS 2019 - Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces, 113–122 (2019). https://doi.org/10.1145/3343055.3359704

Fushimi, T., Marzo, A., Drinkwater, B.W., Hill, T.L.: Acoustophoretic volumetric displays using a fast-moving levitated particle. Applied Physics Letters 115, 64101 (2019). https://doi.org/10.1063/1.5113467

Hirayama, R., Christopoulos, G., Plasencia, D.M., Subramanian, S.: High-speed acoustic holography with arbitrary scattering objects. Science Advances 8, 7614 (2022). https://doi.org/10.1126/sciadv.abn7614

Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Transactions on Graphics 33, 85 (2014). https://doi.org/10.1145/2601097.2601118

Morales, R., Marzo, A., Subramanian, S., Mart´ınez, D.: Leviprops: Animating levitated optimized fabric structures using holographic acoustic tweezers. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 651–661 (2019). https://doi.org/10.1145/3332165.3347882

Downloads

Posted


Submitted: 2023-01-24 03:16:47 UTC

Published: 2023-01-25 04:20:56 UTC
Section
Engineering in General